1. First, finish the textbook problem 10.2 — calculate to one-loop order the infinite parts of all the counterterms of the pseudoscalar Yukawa theory.

Hint: the infinite part of the four-scalar amplitude $iV(k_1,\ldots,k_4)$ does not depend on the scalar’s momenta, so you may calculate it for any particular k_1,\ldots,k_4 you like. The off-shell momenta are OK too, so let $k_1 = k_2 = k_3 = k_4 = 0$ — this makes for a much easier calculation of the loop diagrams. Likewise, to obtain the infinite part of the one-scalar-two-fermions amplitude, you may also let all external momenta be zeros.

2. And now consider the electric charge renormalization in the scalar QED — the theory of a EM field A^μ interacting with a charged scalar field Φ. At the one-loop level, there are two Feynman diagrams contributing to the 1PI two-photon amplitude, namely

\[i\Sigma^{\mu\nu}_{1 \text{loop}} = \text{1 loop} \quad = \quad \text{1 loop} + \text{loop} \]

(a) Evaluate the two diagrams using dimensional regularization and verify that the net amplitude has form

\[\Sigma^{\mu\nu}_{1 \text{loop}}(k) = (k^2 g^{\mu\nu} - k^\mu k^\nu) \times \Pi_{1 \text{loop}}(k^2) \quad (1) \]

(b) Calculate the $\Pi(k^2)$ due to the above diagrams, determine the δ_3 counterterm (at the one-loop level), and write down the net $\Pi(k^2)$ as a function of k^2.

(c) Finally, consider the effective coupling $\alpha_{\text{eff}}(k^2)$ of the scalar QED at high momenta. Show that at the one-loop level,

\[\frac{1}{\alpha_{\text{eff}}(k^2)} \approx \frac{1}{\alpha(0)} - \frac{1}{12\pi} \left(\log \frac{-k^2}{m^2} - \frac{8}{3} \right). \quad (2) \]