Problem 1(a):
All the commutators in this question follow from the bosonic commutation relations (1) via the Leibniz rule:

\[[\hat{a}_\alpha^\dagger \hat{a}_\beta, \hat{a}_\gamma^\dagger] = [\hat{a}_\alpha^\dagger, \hat{a}_\gamma^\dagger] \hat{a}_\beta + \hat{a}_\alpha^\dagger \hat{a}_\gamma^\dagger = 0 + \delta_{\beta,\gamma} \hat{a}_\alpha^\dagger, \quad (S.1) \]

\[[\hat{a}_\alpha^\dagger \hat{a}_\beta, \hat{a}_\delta] = [\hat{a}_\alpha^\dagger, \hat{a}_\delta] \hat{a}_\beta + \hat{a}_\alpha^\dagger [\hat{a}_\beta, \hat{a}_\delta] = -\delta_{\alpha,\delta} \hat{a}_\beta + 0 = -\delta_{\alpha,\delta} \hat{a}_\beta, \quad (S.2) \]

\[[\hat{a}_\alpha \hat{a}_\beta^\dagger, \hat{a}_\alpha^\dagger \hat{a}_\delta] = [\hat{a}_\alpha \hat{a}_\beta^\dagger, \hat{a}_\delta^\dagger] \hat{a}_\alpha + \hat{a}_\alpha \hat{a}_\beta^\dagger \hat{a}_\delta = \delta_{\beta,\gamma} \hat{a}_\alpha^\dagger \hat{a}_\delta - \delta_{\alpha,\delta} \hat{a}_\beta \hat{a}_\gamma^\dagger, \quad (S.3) \]

\[[\hat{a}_\mu^\dagger \hat{a}_\nu, \hat{a}_\alpha^\dagger \hat{a}_\beta^\dagger \hat{a}_\gamma \hat{a}_\delta] = [\hat{a}_\mu^\dagger \hat{a}_\nu, \hat{a}_\alpha^\dagger \hat{a}_\beta^\dagger \hat{a}_\gamma \hat{a}_\delta] + \hat{a}_\alpha^\dagger [\hat{a}_\mu^\dagger \hat{a}_\nu, \hat{a}_\beta^\dagger \hat{a}_\gamma \hat{a}_\delta] \hat{a}_\delta + \hat{a}_\alpha^\dagger \hat{a}_\mu^\dagger \hat{a}_\nu \hat{a}_\beta \hat{a}_\gamma \hat{a}_\delta + \hat{a}_\alpha^\dagger \hat{a}_\mu^\dagger \hat{a}_\nu \hat{a}_\beta \hat{a}_\gamma \hat{a}_\delta - \delta_{\nu\alpha} \hat{a}_\beta^\dagger \hat{a}_\gamma \hat{a}_\delta \hat{a}_\mu^\dagger \hat{a}_\nu \hat{a}_\beta^\dagger \hat{a}_\gamma \hat{a}_\delta. \quad (S.4) \]

Problem 1(b):
First, let’s prove by induction that for integer \(n \geq 0 \), \([\hat{a}, (\hat{a}^\dagger)^n] = n \times (\hat{a}^\dagger)^{n-1} \). The induction base is easy to check: For \(n = 0 \) we have \([\hat{a}, (\hat{a}^\dagger)^0] = [\hat{a}, 1] = 0 \times 0 \) whatever, while for \(n = 1 \) we have \([\hat{a}, (\hat{a}^\dagger)^1] = [a, \hat{a}^\dagger] = 1 \times (\hat{a}^\dagger)^0 \). Now suppose \([\hat{a}, (\hat{a}^\dagger)^n] = n(\hat{a}^\dagger)^{n-1} \) for some \(n \); then for \(n + 1 \) we have

\[[\hat{a}, (\hat{a}^\dagger)^{n+1}] = [\hat{a}, (\hat{a}^\dagger)^n \times \hat{a}^\dagger] = [a, (\hat{a}^\dagger)^n] \times \hat{a}^\dagger + (\hat{a}^\dagger)^n \times [a, \hat{a}^\dagger] = n(\hat{a}^\dagger)^{n-1} \times \hat{a}^\dagger + (\hat{a}^\dagger)^n \times 1 = (n + 1) \times (\hat{a}^\dagger)^n. \quad (S.5) \]

Similarly, for any integer \(n \geq 0 \), \([\hat{a}^\dagger, (\hat{a}^\dagger)^n] = -n(\hat{a}^\dagger)^{n-1} \); again, the proof is by induction, which is so similar to the above that I don’t need to spell it out.

Next, consider an analytic function \(f \) of the creation operator. Analytic functions can be expanded into power series, \(f(x) = f_0 + f_1 x + f_2 x^2 + \cdots \); substituting \(x \mapsto \hat{a}^\dagger \) into such series for \(f \), we build the operator

\[f(\hat{a}^\dagger) \overset{\text{def}}{=} \sum_{n=0}^{\infty} f_n \times (\hat{a}^\dagger)^n = f_0 + f_1 \times \hat{a}^\dagger + f_2 \times (\hat{a}^\dagger)^2 + \cdots. \quad (S.6) \]
Likewise, for \(f'(x) \overset{\text{def}}{=} \frac{df}{dx} = 0 + f_1 + 2f_2x + 3f_3x^2 + \cdots \) we have

\[
\begin{align*}
f'(\hat{a}^\dagger) &= \sum_{n=0}^{\infty} nf_n \times (\hat{a}^\dagger)^{n-1}. & (S.7)
\end{align*}
\]

Consequently,

\[
\begin{align*}
[\hat{a}, f(\hat{a}^\dagger)] &= \sum_{n=0}^{\infty} f_n \times [\hat{a}, (\hat{a}^\dagger)^n] = \sum_{n=0}^{\infty} f_n \times n \times (\hat{a}^\dagger)^{n-1} = f'(\hat{a}^\dagger). & (S.8)
\end{align*}
\]

Similarly, for an analytic function of the annihilation operator, \(f(\hat{a}) = f_0 + f_1 \times \hat{a} + f_2 \times (\hat{a})^2 + \cdots \), we have

\[
\begin{align*}
[\hat{a}^\dagger, f(\hat{a})] &= \sum_{n=0}^{\infty} f_n \times [\hat{a}^\dagger, (\hat{a})^n] = \sum_{n=0}^{\infty} f_n \times (-n) \times (\hat{a})^{n-1} = -f'(\hat{a}). & (S.9)
\end{align*}
\]

\textbf{Q.E.D.}

\textbf{Problem 1(c):}

In light of part (b), \([\hat{a}, \exp(c\hat{a}^\dagger)] = \exp'(c\hat{a}^\dagger) = c \exp(c\hat{a}^\dagger) \) and \([\hat{a}^\dagger, \exp(c\hat{a})] = -\exp'(c\hat{a}) = -c \exp(c\hat{a}) \). Consequently,

\[
\begin{align*}
e^{-c\hat{a}} \hat{a}^\dagger e^{-c\hat{a}} &= \left(\hat{a}^\dagger e^{-c\hat{a}} - [\hat{a}^\dagger, e^{-c\hat{a}}] \right) e^{-c\hat{a}} = \left(\hat{a}^\dagger e^{-c\hat{a}} - (-c)e^{-c\hat{a}} \right) e^{-c\hat{a}} = \hat{a}^\dagger + c. & (S.10)
\end{align*}
\]

and likewise

\[
\begin{align*}
e^{-c\hat{a}} \hat{a}^\dagger e^{-c\hat{a}^\dagger} &= \left(\hat{a} e^{-c\hat{a}^\dagger} - [\hat{a}, e^{-c\hat{a}^\dagger}] \right) e^{-c\hat{a}^\dagger} = \left(\hat{a} e^{-c\hat{a}^\dagger} - (+c)e^{-c\hat{a}^\dagger} \right) e^{-c\hat{a}^\dagger} = \hat{a} - c. & (S.11)
\end{align*}
\]

Now, for any two operators \(\hat{X} \) and \(\hat{Y} \),

\[
\begin{align*}
\left(e^{\hat{X}} \hat{Y} e^{-\hat{X}} \right)^n &= e^{\hat{X}} \hat{Y} e^{-\hat{X}} \times e^{\hat{X}} \hat{Y} e^{-\hat{X}} \times \cdots \times e^{\hat{X}} \hat{Y} e^{-\hat{X}} = e^{\hat{X}} \hat{Y} \times \hat{Y} \times \cdots \hat{Y} e^{-\hat{X}} = e^{\hat{X}} \hat{Y}^n e^{-\hat{X}}. & (S.12)
\end{align*}
\]
Consequently, for any analytic function \(f(\hat{Y}) = f_0 + f_1 \hat{Y} + f_2 \hat{Y} + \cdots \),

\[
f\left(e^{\hat{X} \hat{Y} e^{-\hat{X}}} \right) = \sum_n f_n \left(e^{\hat{X} \hat{Y} e^{-\hat{X}}} \right)^n = \sum_n f_n \times e^{\hat{X} \hat{Y} e^{-\hat{X}}} = e^{\hat{X} \left(\sum_n f_n \hat{Y}^n \right) e^{-\hat{X}}} = e^{\hat{X} f(\hat{Y}) e^{-\hat{X}}}. \tag{S.13}
\]

In particular, for \(\hat{X} = c \hat{a} \) and \(\hat{Y} = \hat{a}^\dagger \),

\[
e^{c \hat{a}} f(\hat{a}^\dagger) e^{-c \hat{a}} = f\left(e^{c \hat{a} \hat{a}^\dagger e^{-c \hat{a}}} \right) = f(\hat{a}^\dagger + c), \tag{S.14}
\]

and likewise, for \(\hat{X} = c \hat{a}^\dagger \) and \(\hat{Y} = \hat{a} \),

\[
e^{c \hat{a}^\dagger} f(\hat{a}) e^{-c \hat{a}^\dagger} = f\left(e^{c \hat{a}^\dagger \hat{a} e^{-c \hat{a}^\dagger}} \right) = f(\hat{a} - c). \tag{S.15}
\]

\[Q.E.D.\]

Problem 1(d):

Since all the creation operators commute with each other, we may decompose any analytic function of multiple creation operators into a power series with respect to any particular \(\hat{a}_\alpha^\dagger \) as

\[
f(\text{multiple } \hat{a}^\dagger) = \sum_n F_n(\text{other } \hat{a}_\beta^\dagger) \times (\hat{a}_\alpha^\dagger)^n \tag{S.16}
\]

where \(F_n \) are some analytic functions of the *other* creation operators \(\hat{a}_\beta^\dagger \neq \hat{a}_\alpha^\dagger \). The same \(F_n \) appear in the partial derivative of \(f(\hat{a}^\dagger) \) with respect to the \(\hat{a}_\alpha^\dagger \),

\[
\frac{\partial f(\text{multiple } \hat{a}^\dagger)}{\partial \hat{a}_\alpha^\dagger} = \sum_n n \times F_n(\text{other } \hat{a}_\beta^\dagger) \times (\hat{a}_\alpha^\dagger)^{n-1}. \tag{S.17}
\]

Note that the creation operators \(\hat{a}_\beta^\dagger \) with \(\beta \neq \alpha \) commute with the \(\hat{a}_\alpha \) annihilation operator,
hence any function of such $\hat{a}^\dagger_{\beta \neq \alpha}$ also commutes with the \hat{a}_α,

$$\left[\hat{a}_\alpha, F_n(\text{other } \hat{a}_\beta^\dagger) \right] = 0,$$ \hspace{1cm} \text{(S.18)}

therefore

$$\left[\hat{a}_\alpha, f(\text{multiple } \hat{a}^\dagger) \right] = \sum_n F_n(\text{other } \hat{a}_\beta^\dagger) \times \left[\hat{a}_\alpha, (\hat{a}_\alpha^\dagger)^n \right]$$

$$= \sum_n F_n(\text{other } \hat{a}_\beta^\dagger) \times n(\hat{a}_\alpha^\dagger)^{n-1} = \frac{\partial f(\text{multiple } \hat{a}^\dagger)}{\partial \hat{a}_\alpha}. \hspace{1cm} \text{(S.19)}$$

This proves the first equation (4).

Similarly, any analytic function of multiple annihilation operators \hat{a}_β — which also commute with each other — may be decomposed into a power series in any particular \hat{a}_α as

$$f(\text{multiple } \hat{a}) = \sum_n F_n(\text{other } \hat{a}_\beta) \times (\hat{a}_\alpha)^n$$ \hspace{1cm} \text{(S.20)}

where the F_n are analytic functions of the remaining annihilation operators $\hat{a}_{\beta \neq \alpha}$ but not of the \hat{a}_α itself. Consequently, as operators all the $F_n(\text{other } \hat{a}_\beta)$ commute with the \hat{a}_α^\dagger and hence

$$\left[\hat{a}_\alpha^\dagger, f(\text{multiple } \hat{a}) \right] = \sum_n F_n(\text{other } \hat{a}_\beta) \times \left[\hat{a}_\alpha^\dagger, (\hat{a}_\alpha)^n \right]$$

$$= \sum_n F_n(\text{other } \hat{a}_\beta) \times -n(\hat{a}_\alpha)^{n-1} = -\frac{\partial f(\text{multiple } \hat{a})}{\partial \hat{a}_\alpha}. \hspace{1cm} \text{(S.21)}$$

This proves the second equation (4).

Now let’s proceed similarly to part (c). Applying the first two eqs. (4) to $f(\text{multiple } x) = \exp \left(\sum_\beta c_\beta x_\beta \right)$, we have

$$\left[\hat{a}_\alpha, \exp \left(\sum_\beta c_\beta \hat{a}_\beta^\dagger \right) \right] = +\frac{\partial}{\partial \hat{a}_\alpha} \exp \left(\sum_\beta c_\beta \hat{a}_\beta^\dagger \right) = +c_\alpha \times \exp \left(\sum_\beta c_\beta \hat{a}_\beta^\dagger \right),$$

$$\left[\hat{a}_\alpha^\dagger, \exp \left(\sum_\beta c_\beta \hat{a}_\beta \right) \right] = -\frac{\partial}{\partial \hat{a}_\alpha} \exp \left(\sum_\beta c_\beta \hat{a}_\beta \right) = -c_\alpha \times \exp \left(\sum_\beta c_\beta \hat{a}_\beta \right), \hspace{1cm} \text{(S.22)}$$
and consequently
\[
\exp\left(\sum c^\beta \hat{a}^\beta\right) \times \hat{a}_\alpha \times \exp\left(-\sum c^\beta \hat{a}^\beta\right) = \hat{a}_\alpha + c_\alpha,
\]
\[
\exp\left(\sum c^\beta \hat{a}^\dagger_\beta\right) \times \hat{a}_\alpha \times \exp\left(-\sum c^\beta \hat{a}^\dagger_\beta\right) = \hat{a}_\alpha - c_\alpha.
\]
(S.23)

Finally, applying eq. (S.13) to these formulae, we obtain the last two eqs. (4) for any analytic function \(f \).
Q.E.D.

Problem 2(a):

Classically, for each scalar field \(\Phi_a(x, t) \) there is a canonically conjugate field
\[
\Pi_a(x, t) = \frac{\delta L}{\delta \Phi_a(x)} \bigg|_{t} = \dot{\Phi}_a(x, t).
\]
(S.24)

Consequently, the classical Hamiltonian density is
\[
\mathcal{H} = \sum_a \Pi_a \dot{\Phi}_a - L = \frac{1}{2} \sum_a \Pi_a^2 + \frac{1}{2} \sum_a (\nabla \Phi_a)^2 + \frac{m^2}{2} \sum_a \Phi_a^2 + \frac{\lambda}{24} \left(\sum_a \dot{\Phi}_a^2\right)^2
\]
while the Poisson brackets involve \(\sum_a \) as well as \(\int d^3x \):
\[
[[A, B]] = \int d^3x \sum_a \left(\frac{\delta A}{\delta \Phi_a(x)} \frac{\delta B}{\delta \Pi_a(x)} - \frac{\delta A}{\delta \Pi_a(x)} \frac{\delta B}{\delta \Phi_a(x)}\right).
\]
(S.26)

In particular,
\[
[[\Phi_a(x), \Phi_b(y)]] = 0, \quad [[\Pi_a(x), \Pi_b(y)]] = 0, \quad [[\Phi_a(x), \Pi_b(y)]] = \delta_{ab}\delta^{(3)}(x - y).
\]
(S.27)

Consequently, in the quantum theory the corresponding quantum fields \(\hat{\Phi}_a(x, t) \) and \(\hat{\Pi}_a(x, t) \) obey similar equal-time commutation relations:
\[
[\hat{\Phi}_a(x, t), \hat{\Phi}_b(y, \text{same } t)] = 0,
\]
\[
[\hat{\Pi}_a(x, t), \hat{\Pi}_b(y, \text{same } t)] = 0,
\]
\[
[\hat{\Phi}_a(x, t), \hat{\Pi}_b(y, \text{same } t)] = i\delta_{ab}\delta^{(3)}(x - y).
\]
(S.28)

And the Hamiltonian operator of the quantum theory follows from the classical Hamilto-
\[\hat{H} = \int d^3x \hat{\mathcal{H}}(x, t) \quad \text{where} \]
\[\hat{\mathcal{H}}(x, t) = \frac{1}{2} \sum_a \hat{\Pi}_a^2(x, t) + \frac{1}{2} \sum_a (\nabla \hat{\Phi}_a(x, t))^2 + \frac{m^2}{2} \sum_a \hat{\Phi}_a^2(x, t) + \frac{\lambda}{24} \left(\sum_a \hat{\Phi}_a^2(x, t) \right)^2. \]

(S.29)

Problem 2(b):
Applying the Leibniz rule to the equal-time commutators (S.28), we have
\[
\left[\hat{\Phi}_a(y, t) \hat{\Pi}_b(y, t), \hat{\Phi}_c(x, t) \right] = \hat{\Phi}_a(y, t) \left[\hat{\Pi}_b(y, t), \hat{\Phi}_c(x, t) \right] + \left[\hat{\Phi}_a(y, t), \hat{\Phi}_c(x, t) \right] \hat{\Pi}_b(y, t)
\]
\[= \hat{\Phi}_a(y, t) \times (-i) \delta_{bc} \delta^{(3)}(y - x) + 0 \times \hat{\Pi}_b(y, t)\]
\[= -i \delta_{bc} \hat{\Phi}_a(y) \times \delta^{(3)}(y - x) \quad \text{(S.30)}\]

and likewise
\[
\left[\hat{\Phi}_b(y, t) \hat{\Pi}_a(y, t), \hat{\Phi}_c(x, t) \right] = -i \delta_{ac} \hat{\Phi}_b(y, t) \times \delta^{(3)}(y - x). \quad \text{(S.31)}
\]

Hence, for the net charge operator \(\hat{Q}_{ab} \) as in eq. (4.4),
\[
\left[\hat{Q}_{ab}(t), \hat{\Phi}_c(x, t) \right] = \int d^3y \left[\hat{\Phi}_a(y, t) \hat{\Pi}_b(y, t) - \hat{\Phi}_b(y, t) \hat{\Pi}_a(y, t), \hat{\Phi}_c(x, t) \right]
\]
\[= \int d^3y \left(-i \delta_{bc} \hat{\Phi}_a(y, t) + i \delta_{ac} \hat{\Phi}_b(y, t) \right) \times \delta^{(3)}(y - x) \quad \text{(S.32)}
\]
\[= -i \delta_{bc} \hat{\Phi}_a(x, t) + i \delta_{ac} \hat{\Phi}_b(x, t). \]

Similarly,
\[
\left[\hat{\Phi}_a(y, t) \hat{\Pi}_b(y, t), \hat{\Pi}_c(x, t) \right] = \hat{\Phi}_a(y, t) \left[\hat{\Pi}_b(y, t), \hat{\Pi}_c(x, t) \right] + \left[\hat{\Phi}_a(y, t), \hat{\Pi}_c(x, t) \right] \hat{\Pi}_b(y, t)
\]
\[= \hat{\Phi}_a(y, t) \times 0 + i \delta_{ac} \delta^{(3)}(y - x) \times \hat{\Pi}_b(y, t)\]
\[= +i \delta_{ac} \hat{\Pi}_b(y, t) \times \delta^{(3)}(y - x) \quad \text{(S.33)}
\]
and likewise
\[
\left[\hat{\Phi}_b(y, t) \hat{\Pi}_a(y, t), \hat{\Pi}_c(x, t) \right] = +i \delta_{bc} \hat{\Pi}_a(y, t) \times \delta^{(3)}(y - x), \quad \text{(S.34)}
\]
hence
\[
\left[\hat{Q}_{ab}(t), \hat{\Pi}_c(x) \right] = \int d^3y \left[\hat{\Phi}_a(y, t)\hat{\Pi}_b(y, t) - \hat{\Phi}_b(y, t)\hat{\Pi}_a(y, t), \hat{\Pi}_c(x, t) \right] \\
= \int d^3y \left(+i\delta_{ac}\hat{\Pi}_b(y, t) - i\delta_{bc}\hat{\Pi}_a(y, t) \right) \times \delta^{(3)}(y - x) \\
= -i\delta_{bc}\hat{\Pi}_a(x, t) + \delta_{ac}\hat{\Pi}_b(x, t).
\] (S.35)

\[Q.E.D.\]

Problem 2(c):

The Hamiltonian operator (S.29) is $SO(N)$ invariant — in fact, each of the 4 terms comprising the Hamiltonian density $\hat{H}(x, t)$ is separately $SO(N)$ invariant — and that makes them commute with all the \hat{Q}_{ab} charges. Indeed, suppose some N operators \hat{V}_c — which could be $\hat{\Phi}_c(x)$, or $\hat{\Pi}_c(x)$, or whatever — satisfy commutation relations similar to eqs. (4.5), namely

\[
\left[\hat{Q}_{ab}(t), \hat{V}_c(same \ t) \right] = -i\delta_{bc}\hat{V}_a(t) + i\delta_{ac}\hat{V}_b(t),
\] (S.36)

then the $\sum_c \hat{V}_c^2$ operator commutes with all the charges \hat{Q}_{ab} (at equal times). Here is the proof:

\[
\left[\hat{Q}_{ab}, \sum_c \hat{V}_c^2 \right] = \sum_c \left[\hat{Q}_{ab}, \hat{V}_c^2 \right] = \sum_c \left\{ \hat{V}_c, \left[\hat{Q}_{ab}, \hat{V}_c \right] \right\} \\
= \sum_c \left\{ \hat{V}_c, \left(-i\delta_{bc}\hat{V}_a + i\delta_{ac}\hat{V}_b \right) \right\} \\
= -i \left\{ \hat{V}_b, \hat{V}_a \right\} + i \left\{ \hat{V}_a, \hat{V}_b \right\} \\
= 0.
\] (S.37)

In particular, letting $\hat{V}_c = \hat{\Pi}_c(x)$, or $\hat{V}_c = \hat{\Phi}_c(x)$, or $\hat{V}_c = \nabla\hat{\Phi}_c(x)$ — which also satisfy

\[
\left[\hat{Q}_{ab}(t), \nabla\hat{\Phi}_c(x, t) \right] = \nabla \left[\hat{Q}_{ab}(t), \hat{\Phi}_c(x, t) \right] = -i\delta_{bc} \nabla\hat{\Phi}_a(x, t) + i\delta_{ac} \nabla\hat{\Phi}_b(x, t)
\] (S.38)

— we immediately obtain

\[
\left[\hat{Q}_{ab}(t), \sum_c \hat{\Pi}_c^2(x, t) \right] = 0, \quad \left[\hat{Q}_{ab}(t), \sum_c \nabla\hat{\Phi}_c^2(x, t) \right] = 0, \quad \left[\hat{Q}_{ab}(t), \sum_c \hat{\Phi}_c^2(x, t) \right] = 0.
\] (S.39)
hence also

$$\left[\hat{Q}_{ab}(t), \left(\sum_c \hat{\Phi}_c^2(x, t) \right)^2 \right] = 0,$$

(S.40)

and therefore $$\left[\hat{Q}_{ab}(t), \hat{H} \right] = 0.$$ \textit{Q.E.D.}

Problem 2(d):
The commutations relations (10) between the charges follow from expanding $$\hat{Q}_{cd}$$ into quantum fields according to eq. (8) and then using the commutators (9) of those fields with the $$\hat{Q}_{ab}$$ charge:

$$\left[\hat{Q}_{ab}, \hat{Q}_{cd} \right] = \left[\hat{Q}_{ab}, \int d^3x \left(\hat{\Phi}_c(x) \tilde{\Pi}_d(x) - \hat{\Phi}_d(x) \tilde{\Pi}_c(x) \right) \right]$$

$$= \int d^3x \left[\hat{Q}_{ab}, \left(\hat{\Phi}_c(x) \tilde{\Pi}_d(x) - \hat{\Phi}_d(x) \tilde{\Pi}_c(x) \right) \right]$$

$$= \int d^3x \left(\hat{\Phi}_c(x) \left[\hat{Q}_{ab}, \tilde{\Pi}_d(x) \right] + \left[\hat{Q}_{ab}, \hat{\Phi}_c(x) \right] \tilde{\Pi}_d(x) \right.$$

$$\left. - \hat{\Phi}_d(x) \left[\hat{Q}_{ab}, \tilde{\Pi}_c(x) \right] - \left[\hat{Q}_{ab}, \hat{\Phi}_d(x) \right] \tilde{\Pi}_c(x) \right)$$

$$= \int d^3x \left(\hat{\Phi}_c \left(-i \delta_{bd} \tilde{\Pi}_a + i \delta_{ad} \tilde{\Pi}_b \right) + \left(-i \delta_{bc} \hat{\Phi}_a + i \delta_{ac} \hat{\Phi}_b \right) \tilde{\Pi}_d \right.$$

$$\left. - \hat{\Phi}_d \left(-i \delta_{bc} \tilde{\Pi}_a + i \delta_{ac} \tilde{\Pi}_b \right) - \left(-i \delta_{bd} \hat{\Phi}_a + i \delta_{ad} \hat{\Phi}_b \right) \tilde{\Pi}_c \right) \right) \@x$$

$$= -i \delta_{bd} \times \int d^3x \left(\hat{\Phi}_c \tilde{\Pi}_a - \hat{\Phi}_a \tilde{\Pi}_c \right) \@x + i \delta_{ad} \times \int d^3x \left(\hat{\Phi}_c \tilde{\Pi}_b - \hat{\Phi}_b \tilde{\Pi}_c \right) \@x$$

$$+ i \delta_{bc} \times \int d^3x \left(\hat{\Phi}_d \tilde{\Pi}_a - \hat{\Phi}_a \tilde{\Pi}_d \right) \@x - i \delta_{ac} \times \int d^3x \left(\hat{\Phi}_d \tilde{\Pi}_b - \hat{\Phi}_b \tilde{\Pi}_d \right) \@x$$

$$= -i \delta_{bd} \times \hat{Q}_{ca} + i \delta_{ad} \times \hat{Q}_{cb} + i \delta_{bc} \times \hat{Q}_{da} - i \delta_{ac} \times \hat{Q}_{db}$$

$$= -i \delta_{bc} \times \hat{Q}_{ad} + i \delta_{ac} \times \hat{Q}_{bd} + i \delta_{bd} \times \hat{Q}_{ac} - i \delta_{ad} \times \hat{Q}_{bc}.$$ \textit{Q.E.D.}

(S.41)

Note: since the charges are time independent, the fields in the above formulae may be evaluated at any time $$t$$, as long as it’s the same time for all the operators.
Problem 2(e):
In class, we have expanded a single free scalar fields \(\Phi(x) \) and its canonical conjugate \(\Pi(x) \) into creation and annihilation operators \(\hat{a}_p \) and \(\hat{a}^\dagger_p \). In the present \(N \)-field case, we may proceed exactly like in class, except that the creation and annihilation operators are labeled by the species index \(a = 1, \ldots, N \) in addition to the momentum mode \(p \). Thus,

\[
\hat{\Phi}_{a,p} = \sqrt{\frac{1}{2E_p}} (\hat{a}_{a,p} + \hat{a}^\dagger_{a,-p}), \quad \hat{\Pi}_{a,p} = \sqrt{\frac{E_p}{2}} (-i\hat{a}_{a,p} + i\hat{a}^\dagger_{a,-p}) \tag{S.42}
\]

— cf. eq. (14) of my notes — hence Fourier-transforming back to the coordinate space we get

\[
\hat{\Phi}_a(x) = \sum_p L^{-3/2} e^{ipx} \hat{\Phi}_{a,p} = L^{-3/2} \sum_p \sqrt{\frac{1}{2E_p}} e^{ipx} (\hat{a}_{a,p} + \hat{a}^\dagger_{a,-p}),
\]

\[
\hat{\Pi}_a(x) = \sum_p L^{-3/2} e^{ipx} \hat{\Pi}_{a,p} = L^{-3/2} \sum_p \sqrt{E_p} e^{ipx} (-i\hat{a}_{a,p} + i\hat{a}^\dagger_{a,-p}) \tag{S.43}
\]

\[
= \sum_k L^{-3/2} e^{-ikx} \hat{\Pi}_{a,k}^\dagger = L^{-3/2} \sum_p \sqrt{\frac{E_k}{2}} e^{-ikx} (i\hat{a}^\dagger_{a,k} - i\hat{a}_{a,-k}).
\]

Given this expansion of the quantum fields, we may expand integrals of fields bilinears into sums of \(\hat{a}\hat{a}, \hat{a}\hat{a}^\dagger, \hat{a}^\dagger\hat{a}, \) and \(\hat{a}^\dagger\hat{a}^\dagger \) operators. In particular,

\[
\int d^3 x \hat{\Phi}_a(x) \hat{\Pi}_b(x) = \int d^3 x L^{-3} \sum_{p,k} \sqrt{\frac{E_k}{4E_p}} \times e^{+ipx-ikx} \times (\hat{a}_{a,p} + \hat{a}^\dagger_{a,-p})(i\hat{a}^\dagger_{b,k} - i\hat{a}_{b,-k}) \times
\]

\[
\times \left(L^{-3} \int d^3 x e^{+ipx-ikx} = \delta_{p,k} \right) \tag{S.44}
\]

\[
= \sum_p \sqrt{\frac{1}{4}} (\hat{a}_{a,p} + \hat{a}^\dagger_{a,-p})(i\hat{a}^\dagger_{b,p} - i\hat{a}_{b,-p})
\]

\[
= \frac{i}{2} \sum_p \hat{a}_{a,p} \hat{a}^\dagger_{b,p} + \frac{i}{2} \sum_p \hat{a}^\dagger_{a,-p} \hat{a}^\dagger_{b,p} - \frac{i}{2} \sum_p \hat{a}_{a,p} \hat{a}_{b,-p} - \frac{i}{2} \sum_p \hat{a}^\dagger_{a,-p} \hat{a}_{b,-p}.
\]
Likewise,

\[
\int d^3 \mathbf{x} \hat{\Phi}_b(\mathbf{x}) \hat{\Pi}_a(\mathbf{x}) = \\
= \frac{i}{2} \sum_p \hat{a}_{b,p} \hat{a}^\dagger_{a,p} + \frac{i}{2} \sum_p \hat{\bar{a}}_{b,-p} \hat{a}^\dagger_{a,-p} - \frac{i}{2} \sum_p \hat{\bar{a}}_{b,p} \hat{a}_{a,-p} - \frac{i}{2} \sum_p \hat{a}^\dagger_{b,-p} \hat{\bar{a}}_{a,-p} \quad (S.45)
\]

where in the two middle sums on the last line I have changed \(p \to -p \). Combining eqs. (S.44) and (S.45) we immediately obtain the expansion of the charge operators (8):

\[
\hat{Q}_{ab} = \int d^3 \mathbf{x} \hat{\Phi}_a(\mathbf{x}) \hat{\Pi}_b(\mathbf{x}) - \int d^3 \mathbf{x} \hat{\Phi}_b(\mathbf{x}) \hat{\Pi}_a(\mathbf{x}) \\
= \frac{i}{2} \sum_p \hat{a}_{a,p} \hat{a}^\dagger_{b,p} + \frac{i}{2} \sum_p \hat{a}^\dagger_{a,-p} \hat{a}^\dagger_{b,-p} - \frac{i}{2} \sum_p \hat{\bar{a}}_{a,p} \hat{\bar{a}}_{b,p} - \frac{i}{2} \sum_p \hat{\bar{a}}_{a,-p} \hat{\bar{a}}_{b,-p} \\
- \frac{i}{2} \sum_p \hat{\bar{a}}_{b,p} \hat{\bar{a}}_{a,p} - \frac{i}{2} \sum_p \hat{a}_{b,-p} \hat{\bar{a}}_{a,-p} + \frac{i}{2} \sum_p \hat{a}_{b,-p} \hat{\bar{a}}_{a,-p} + \frac{i}{2} \sum_p \hat{\bar{a}}_{b,-p} \hat{a}_{a,-p} \quad (S.46)
\]

where the commutators on the last line vanish. Hence

\[
\hat{Q}_{ab} = \frac{i}{2} \sum_p (\hat{a}_{a,p} \hat{a}^\dagger_{b,p} - \hat{\bar{a}}_{b,p} \hat{\bar{a}}^\dagger_{a,p}) - \frac{i}{2} \sum_p (\hat{\bar{a}}_{a,-p} \hat{\bar{a}}_{b,-p} - \hat{a}^\dagger_{b,-p} \hat{a}_{a,-p}) \\
\langle \text{changing } p \to -p \text{ in the second sum} \rangle \\
= \frac{i}{2} \sum_p (\hat{a}_{a,p} \hat{a}^\dagger_{b,p} - \hat{\bar{a}}_{b,p} \hat{\bar{a}}^\dagger_{a,p}) - \frac{i}{2} \sum_p (\hat{\bar{a}}_{a,p} \hat{\bar{a}}_{b,p} - \hat{a}^\dagger_{b,p} \hat{a}_{a,p}) \quad (S.47)
\]

\[
= \frac{i}{2} \sum_p (\{\hat{a}_{a,p} \hat{\bar{a}}^\dagger_{b,p}\} - \{\hat{\bar{a}}_{a,p} \hat{a}^\dagger_{b,p}\}).
\]

In each term in the last sum hear,

\[
\{\hat{a}_{a,p} \hat{\bar{a}}^\dagger_{b,p}\} = 2\hat{\bar{a}}^\dagger_{b,p} \hat{a}_{a,p} + [\hat{a}_{a,p} \hat{\bar{a}}^\dagger_{b,p}] = 2\hat{\bar{a}}^\dagger_{b,p} \hat{a}_{a,p} + \delta_{ab} \quad (S.48)
\]

10
and likewise
\[
\{\hat{a}_{a,p}\hat{a}^\dagger_{b,p}\} = 2\hat{a}^\dagger_{b,p}\hat{a}_{a,p} + \delta_{ab},
\] (S.49)

hence
\[
\{\hat{a}_{a,p}\hat{a}^\dagger_{b,p}\} - \{\hat{a}_{a,p}\hat{a}^\dagger_{b,p}\} = 2\hat{a}^\dagger_{b,p}\hat{a}_{a,p} - 2\hat{a}^\dagger_{a,p}\hat{a}_{b,p}
\] (S.50)

and therefore
\[
\hat{Q}_{ab} = \sum_p (-i\hat{a}^\dagger_{a,p}\hat{a}_{b,p} + i\hat{a}^\dagger_{b,p}\hat{a}_{a,p}).
\] (11)

Q.E.D.

Problem 2(f):

In light of eq. (S.3),
\[
[\hat{a}^\dagger_{a,p}\hat{a}_{b,p}, \hat{a}^\dagger_{c,p}\hat{a}_{d,p}] = \delta_{p,p'}(\delta_{bc}\hat{a}^\dagger_{a,p}\hat{a}_{d,p} - \delta_{ad}\hat{a}^\dagger_{c,p}\hat{a}_{b,p}).
\] (S.51)

Consequently, expanding the charges \hat{Q}_{ab} and \hat{Q}_{cd} according to eq. (11),
\[
[\hat{Q}_{ab}, \hat{Q}_{cd}] = \sum_{p,p'} \left(-[\hat{a}^\dagger_{a,p}\hat{a}_{b,p}, \hat{a}^\dagger_{c,p}\hat{a}_{d,p}] + [\hat{a}^\dagger_{b,p}\hat{a}_{a,p}, \hat{a}^\dagger_{c,p}\hat{a}_{d,p}] \\
+ [\hat{a}^\dagger_{a,p}\hat{a}_{b,p}, \hat{a}^\dagger_{d,p}\hat{a}_{c,p}] - [\hat{a}^\dagger_{b,p}\hat{a}_{a,p}, \hat{a}^\dagger_{d,p}\hat{a}_{c,p}] \right) \\
\left\{ \text{using eq. (S.51)} \right\}
\]
\[
= \sum_{p,p'} \delta_{p,p'} \left(-\left(\delta_{bc}\hat{a}^\dagger_{a,p}\hat{a}_{d,p} - \delta_{ad}\hat{a}^\dagger_{c,p}\hat{a}_{b,p}\right) + \left(\delta_{ac}\hat{a}^\dagger_{b,p}\hat{a}_{d,p} - \delta_{bd}\hat{a}^\dagger_{c,p}\hat{a}_{a,p}\right) \\
+ \left(\delta_{bd}\hat{a}^\dagger_{a,p}\hat{a}_{c,p} - \delta_{ac}\hat{a}^\dagger_{d,p}\hat{a}_{b,p}\right) - \left(\delta_{ad}\hat{a}^\dagger_{b,p}\hat{a}_{c,p} - \delta_{bc}\hat{a}^\dagger_{d,p}\hat{a}_{a,p}\right) \right)
\]
\[
\langle \text{reorganizing by } \delta \text{'s} \rangle
\]
\[
= \sum_p \left(-\delta_{bc}\left(\hat{a}^\dagger_{a,p}\hat{a}_{d,p} - \hat{a}^\dagger_{d,p}\hat{a}_{a,p}\right) + \delta_{ac}\left(\hat{a}^\dagger_{b,p}\hat{a}_{d,p} - \hat{a}^\dagger_{d,p}\hat{a}_{b,p}\right) \\
+ \delta_{bd}\left(\hat{a}^\dagger_{a,p}\hat{a}_{c,p} - \hat{a}^\dagger_{c,p}\hat{a}_{a,p}\right) + \delta_{ad}\left(\hat{a}^\dagger_{b,p}\hat{a}_{c,p} - \hat{a}^\dagger_{c,p}\hat{a}_{b,p}\right) \right)
\]
\[
= -i\delta_{bc}\hat{Q}_{ad} + i\delta_{ac}\hat{Q}_{bd} + i\delta_{bd}\hat{Q}_{ac} - i\delta_{ad}\hat{Q}_{bc}.
\] (10)

Q.E.D.
Problem 2(g):
Note: the first two equations (12) for the annihilation operators \(\hat{a}_p \) and \(\hat{b}_p \) parallel the way real fields \(\Phi_1(x) \) and \(\Phi_2(x) \) combine into the complex field \(\Phi(x) \) and its hermitian conjugate \(\Phi^\dagger(x) \). The last two equations (12) for the creation operators follow from the first two equations by hermitian conjugation. Thanks to these definitions,

\[
\hat{\Phi}_p \equiv \frac{\hat{\Phi}_{a,p} + i\hat{\Phi}_{2,k}}{\sqrt{2}} = \frac{\hat{a}_{1,p} + \hat{a}_{1,-p}^\dagger + i\hat{a}_{2,p} + i\hat{a}_{2,-p}^\dagger}{\sqrt{2}\sqrt{2E_p}} \tag{S.52}
\]

and hence

\[
\hat{\Phi}(x) = \sum_p L^{-3/2}e^{ipx} \times \frac{\hat{a}_p + \hat{b}_p^\dagger}{\sqrt{2E_p}}. \tag{S.53}
\]

Note that this non-hermitian \(\hat{\Phi} \) fields contains the particle annihilation operators but the antiparticle creation operators! The remaining antiparticle annihilation operators and particle creation operators comprise the hermitian conjugate field \(\Phi^\dagger(x) \):

\[
\hat{\Phi}^\dagger(x) = \sum_p L^{-3/2}e^{-ipx} \times \frac{\hat{a}_p^\dagger + \hat{b}_p^\dagger}{\sqrt{2E_p}} = \sum_p L^{-3/2}e^{+ipx} \times \frac{\hat{b}_p + \hat{a}_p^\dagger}{\sqrt{2E_p}}. \tag{S.54}
\]

Eqs. (S.53) and (S.54) justify my definitions (12).

Problem 2(h):
Given the operator definitions (12), we have

\[
\hat{a}_p^\dagger\hat{a}_p - \hat{b}_p^\dagger\hat{b}_p = \frac{1}{2}(\hat{a}_{1,p}^\dagger - i\hat{a}_{2,p}^\dagger)(\hat{a}_{1,p} + i\hat{a}_{2,p}) - \frac{1}{2}(\hat{a}_{1,p}^\dagger + i\hat{a}_{2,p}^\dagger)(\hat{a}_{1,p} - i\hat{a}_{2,p}) \tag{S.55}
\]

= \ -i\hat{a}_{2,p}^\dagger\hat{a}_{1,p} + i\hat{a}_{1,p}^\dagger\hat{a}_{2,p}.
and therefore

\[N_{\text{particles}} - N_{\text{antiparticles}} = \sum_P \left(\hat{a}^\dagger_P \hat{a}_P - \hat{b}^\dagger_P \hat{b}_P \right) \]

\[= \sum_P \left(-i\hat{a}^\dagger_{2P} \hat{a}_{1P} + i\hat{a}^\dagger_{1P} \hat{a}_{2P} \right) \]

\[= \hat{Q}_{21} = -\hat{Q}_{12}. \quad \text{(S.56)} \]

\[Q.E.D. \]

Problem 3(a):
First, let’s show that the creation operators defined according to eq. (16) commute with each other. Pick any two such creation operators \(\hat{a}_\alpha \) and \(\hat{a}_\beta \), and pick any \(N \)-boson state \(|N, \psi\rangle \). Consider the \((N+2) \)-boson wavefunction \(\psi'''(x_1, \ldots, x_{N+2}) \) of the state \(|N + 2, \psi'''\rangle = \hat{a}_\alpha^\dagger \hat{a}_\beta^\dagger |N, \psi\rangle \).

Applying eq. (16) twice, we immediately obtain

\[\psi'''(x_1, \ldots, x_{N+2}) = \frac{1}{\sqrt{(N+1)(N+2)}} \sum_{i,j=1,\ldots,N+2}^{i \neq j} \phi_\alpha(x_i) \times \phi_\beta(x_j) \times \psi(x_1, \ldots, x_{N+2} \text{ except } x_i, x_j). \quad \text{(S.57)} \]

On the RHS of this formula, interchanging \(\alpha \leftrightarrow \beta \) is equivalent to interchanging the summation indices \(i \leftrightarrow j \) — which has no effect on the sum. Consequently, the states \(\hat{a}_\alpha^\dagger \hat{a}_\beta^\dagger |N, \psi\rangle \) and \(\hat{a}_\beta^\dagger \hat{a}_\alpha^\dagger |N, \psi\rangle \) have the same wavefunction (S.57), thus

\[\hat{a}_\alpha^\dagger \hat{a}_\beta^\dagger |N, \psi\rangle = \hat{a}_\beta^\dagger \hat{a}_\alpha^\dagger |N, \psi\rangle. \quad \text{(S.58)} \]

Since this is true for any \(N \) and any totally-symmetric wave function \(\psi \), this means that the creation operators \(\hat{a}_\alpha^\dagger \) and \(\hat{a}_\beta^\dagger \) commute with each other.

Next, let’s pick any two annihilation operators \(\hat{a}_\alpha \) and \(\hat{a}_\beta \) defined according to eq. (17) and show that they commute with each other. Again, let \(|N, \psi\rangle \) be an arbitrary \(N \)-boson state . For \(N < 2 \) we have

\[\hat{a}_\alpha \hat{a}_\beta |N, \psi\rangle = 0 = \hat{a}_\beta \hat{a}_\alpha^\dagger |N, \psi\rangle, \quad \text{(S.59)} \]

so let’s focus on the non-trivial case of \(N \geq 2 \) and consider the \((N - 2) \)-boson wavefunction
\(\psi^{'''\prime\prime\prime} \) of the state \(|N - 2, \psi^{'''\prime\prime\prime}\rangle = \hat{a}_\alpha \hat{a}_\beta |N, \psi \rangle \). Applying eq. (17) twice, we obtain

\[
\psi^{'''\prime\prime\prime}(x_1, \ldots, x_{N-2}) = \sqrt{N(N-1)} \int d^3x_N \int d^3x_{N-1} \phi^*_\alpha(x_N) \times \phi^*_\beta(x_{N-1}) \times \psi(x_1, \ldots, x_{N-2}, x_{N-1}, x_N).
\]

On the RHS of this formula, interchanging \(\alpha \leftrightarrow \beta \) is equivalent to interchanging the integrated-over positions of the \(N^{\text{th}} \) and the \((N-1)^{\text{th}} \) boson in the original state \(|N, \psi \rangle \). Thanks to bosonic symmetry of the wave-function \(\psi \), this interchange has no effect, thus

\[
\hat{a}_\alpha \hat{a}_\beta |N, \psi \rangle = \hat{a}_\beta \hat{a}_\alpha |N, \psi \rangle.
\]

Therefore, when the annihilation operators defined according to eq. (17) act on the totally-symmetric wave functions of identical bosons, they commute with each other.

Finally, let’s pick a creation operator \(\hat{a}_\beta^\dagger \) and an annihilation operator \(\hat{a}_\alpha \), pick an arbitrary \(N \)-boson state \(|N, \psi \rangle \), and consider the difference between the states

\[
|N, \psi^5 \rangle = \hat{a}_\beta^\dagger \hat{a}_\alpha |N, \psi \rangle \quad \text{and} \quad |N, \psi^6 \rangle = \hat{a}_\alpha \hat{a}_\beta^\dagger |N, \psi \rangle.
\]

Suppose \(N > 0 \). Applying eq. (17) to the wave function \(\psi \) and then applying eq. (16) to the result, we obtain

\[
\psi^5(x_1, \ldots, x_N) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \phi_\beta(x_i) \times \psi^{''\prime}(x_1, \ldots, \hat{x}_i, \ldots, x_N) \\
= \sum_{i=1}^{N} \phi_\beta(x_i) \times \int d^3x_{N+1} \phi^*_\alpha(x_{N+1}) \times \psi(x_1, \ldots, \hat{x}_i, \ldots, x_N, x_{N+1}).
\]

14
On the other hand, applying first eq. (16) and then eq. (17), we arrive at

\[\psi^6(x_1, \ldots, x_N) = \sqrt{N+1} \int d^3x_{N+1} \phi_{\alpha}^*(x_{N+1}) \times \psi'(x_1, \ldots, x_N, x_{N+1}) \]

\[= \int d^3x_{N+1} \phi_{\alpha}^*(x_{N+1}) \times \sum_{i=1}^{N+1} \phi_{\beta}(x_i) \times \psi(x_1, \ldots, x_i, \ldots, x_{N+1}) \]

\[= \int d^3x_{N+1} \phi_{\alpha}^*(x_{N+1}) \times \left(\sum_{i=1}^{N} \phi_{\beta}(x_i) \times \psi(x_1, \ldots, x_i, \ldots, x_N, x_{N+1}) \right) \]

\[+ \psi(x_1, \ldots, x_N) \times \int d^3x_{N+1} \phi_{\alpha}^*(x_{N+1}) \times \phi_{\beta}(x_{N+1}) \]

\[= \psi^5(x_1, \ldots, x_N) \quad \langle \text{compare to eq. (S.63)} \rangle \]

\[+ \psi(x_1, \ldots, x_N) \times \langle \phi_{\alpha} | \phi_{\beta} \rangle. \]

(S.64)

Comparing eqs. (S.63) and (S.64), we see that

\[\psi^6(x_1, \ldots, x_N) - \psi^5(x_1, \ldots, x_N) = \psi(x_1, \ldots, x_N) \times \langle \phi_{\alpha} | \phi_{\beta} \rangle = \psi(x_1, \ldots, x_N) \times \delta_{\alpha\beta}, \]

(S.65)

where \(\langle \phi_{\alpha} | \phi_{\beta} \rangle = \delta_{\alpha\beta} \) by orthonormality of the 1-particle basis \{\phi_{\gamma}(x)\}_{\gamma}. In Dirac notations, eq. (S.65) amounts to

\[\left(\hat{a}_{\alpha} \hat{a}_{\beta} - \hat{a}_{\beta} \hat{a}_{\alpha} \right) |N, \psi\rangle = |N, \psi\rangle \times \delta_{\alpha\beta}. \]

(S.66)

Thus far, we have checked this formula for all bosonic states \(|N, \psi\rangle\) except for the vacuum \(|0\rangle\). To complete the proof, note that

\[\hat{a}_{\alpha} |0\rangle = 0 \quad \Rightarrow \quad \hat{a}_{\alpha} \hat{a}_{\alpha} |0\rangle = 0, \]

(S.67)

while

\[\hat{a}_{\alpha} \hat{a}_{\beta} ^{\dagger} |0\rangle = \hat{a}_{\alpha} |1, \phi_{\beta} \rangle = \langle \phi_{\alpha} | \phi_{\beta} \rangle \times |0\rangle = \delta_{\alpha\beta} \times |0\rangle, \]

(S.68)
hence

\[(\hat{a}_\alpha \hat{a}^\dagger_\beta - \hat{a}^\dagger_\beta \hat{a}_\alpha) |0\rangle = \delta_{\alpha\beta} \times |0\rangle. \]

(S.69)

Altogether, eqs. (S.66) and (S.69) verify that

\[[\hat{a}_\alpha, \hat{a}^\dagger_\beta] |\Psi\rangle = \delta_{\alpha\beta} \Psi \]

(S.70)

for any state \(\Psi \) in the bosonic Fock space, hence the operators \(\hat{a}_\alpha \) and \(\hat{a}^\dagger_\beta \) defined according to eqs. (16) and (17) indeed obey the commutation relation \([\hat{a}_\alpha, \hat{a}^\dagger_\beta] = \delta_{\alpha\beta} \). \(Q.E.D. \)

Problem 3(b):

In wave-function terms,

\[
\langle N - 1, \tilde{\psi} | \hat{a}_\alpha | N, \psi \rangle = \int d^3 x_1 \cdots \int d^3 x_{N-1} \tilde{\psi}^* (x_1, \ldots, x_{N-1}) \times \psi'' (x_1, \ldots, x_{N-1}) \\
= \int d^3 x_1 \cdots \int d^3 x_{N-1} \tilde{\psi}^* (x_1, \ldots, x_{N-1}) \times \\
\times \sqrt{N} \int d^3 x_N \phi^*_\alpha \times \psi (x_1, \ldots, x_N) \\
= \sqrt{N} \int d^3 x_1 \cdots \int d^3 x_N \tilde{\psi}^* (x_1, \ldots, x_{N-1}) \times \phi^*_\alpha (x_N) \times \psi (x_1, \ldots, x_N).
\]

(S.71)

At the same time,

\[
\langle N, \psi | \hat{a}^\dagger_\alpha | N - 1, \tilde{\psi} \rangle = \int d^3 x_1 \cdots \int d^3 x_N \psi^* (x_1, \ldots, x_N) \times \tilde{\psi}' (x_1, \ldots, x_N) \\
= \int d^3 x_1 \cdots \int d^3 x_N \psi^* (x_1, \ldots, x_N) \times \\
\times \frac{1}{\sqrt{N}} \sum_{i=1}^N \phi_\alpha (x_i) \times \tilde{\psi} (x_1, \ldots, x_i, \ldots, x_N) \\
= \frac{1}{\sqrt{N}} \sum_{i=1}^N \int d^3 x_1 \cdots \int d^3 x_N \psi^* (x_1, \ldots, x_N) \times \\
\times \phi_\alpha (x_i) \times \tilde{\psi} (x_1, \ldots, x_i, \ldots, x_N).
\]

(S.72)

By bosonic symmetry of the wavefunctions \(\psi \) and \(\tilde{\psi} \), all terms in the sum on the RHS are equal to each other. So, we may replace the summation with a single term — say, for \(i = N \) — and
multiply by N, thus

$$
\langle N, \psi | \hat{a}_\alpha^\dagger | N - 1, \tilde{\psi} \rangle = \frac{N}{\sqrt{N}} \times \int d^3x_1 \cdots \int d^3x_N \psi^*(x_1, \ldots, x_N) \times \phi_\alpha(x_N) \times \tilde{\psi}(x_1, \ldots, x_{N-1}).
$$

(S.73)

By inspection, the RHS of eqs. (S.71) and (S.73) are complex conjugates of each other, hence

$$
\langle N - 1, \tilde{\psi} | \hat{a}_\alpha | N, \psi \rangle = \langle N, \psi | \hat{a}_\alpha^\dagger | N - 1, \tilde{\psi} \rangle^*.
$$

(18)

Q.E.D.

Problem 3(c):

First, a note on the $1/\sqrt{T}$ in eq. (14). We need this factor to properly normalize the multi-boson states in which some bosons may be in the same 1-particle mode. For example, for the two particle states,

$$
|\alpha, \beta\rangle = \hat{a}_\beta^\dagger \hat{a}_\alpha^\dagger |0\rangle \quad \text{when } \alpha \neq \beta, \quad \text{but } |\alpha, \alpha\rangle = \frac{1}{\sqrt{2}} \hat{a}_\alpha^\dagger \hat{a}_\alpha^\dagger |0\rangle.
$$

(S.74)

In terms of the occupation numbers, the properly normalized states are

$$
|\{n_\alpha\}_\alpha\rangle = \bigotimes_\alpha (|n_\alpha\rangle = \frac{(\hat{a}_\alpha^\dagger)^{n_\alpha}}{\sqrt{n_\alpha!}} |0\rangle)_{\text{mode } \alpha} = \left(\prod_\alpha \frac{(\hat{a}_\alpha^\dagger)^{n_\alpha}}{\sqrt{n_\alpha!}} \right) |\text{vacuum}\rangle.
$$

(S.75)

hence eq. (14) in terms of the list.

Now let’s work out the wave functions of the states (14) by successively applying eq. (16).

1. For $N = 1$, states $|\alpha\rangle = \hat{a}_\alpha^\dagger |0\rangle$ have wave functions $\phi_\alpha(x)$.

2. For $N = 2$, states $\sqrt{T} |\alpha, \beta\rangle = \hat{a}_\beta^\dagger \hat{a}_\alpha^\dagger |0\rangle$ have wavefunctions

$$
\sqrt{T} \times \phi_{\alpha,\beta}(x_1, x_2) = \frac{1}{\sqrt{2}} \left(\phi_\beta(x_1) \phi_\alpha(x_2) + \phi_\beta(x_2) \phi_\alpha(x_1) \right).
$$

(S.76)
3. For \(N = 3 \), states \(\sqrt{T} |\alpha, \beta, \gamma\rangle = \hat{a}_\gamma \hat{a}_\beta \hat{a}_\alpha |0\rangle \) have

\[
\sqrt{T} \times \phi_{\alpha\beta\gamma}(x_1, x_2, x_3) = \frac{1}{\sqrt{3}} \left(\phi_\gamma(x_1) \times \frac{1}{\sqrt{2}} (\phi_\beta(x_2)\phi_\alpha(x_3) - \phi_\beta(x_3)\phi_\alpha(x_2)) \right) \\
+ \phi_\gamma(x_2) \times \frac{1}{\sqrt{2}} (\phi_\beta(x_1)\phi_\alpha(x_3) - \phi_\beta(x_3)\phi_\alpha(x_1)) \\
+ \phi_\gamma(x_3) \times \frac{1}{\sqrt{2}} (\phi_\beta(x_1)\phi_\alpha(x_2) - \phi_\beta(x_2)\phi_\alpha(x_1))
\]

\[
= \frac{1}{\sqrt{3}} \sum_{(x_1, x_2, x_3)} \phi_\gamma(\bar{x}_1)\phi_\beta(\bar{x}_2)\phi_\alpha(\bar{x}_3)
\]

\[
= \frac{1}{\sqrt{3}} \sum_{(\bar{\alpha}, \bar{\beta}, \bar{\gamma})} \phi_{\bar{\alpha}}(x_1)\phi_{\bar{\beta}}(x_2)\phi_{\bar{\gamma}}(x_3).
\]

Extrapolating from eq. (S.77), the \(N \)-particle state \(\sqrt{T} |\alpha, \ldots, \omega\rangle = \hat{a}_\omega \cdots \hat{a}_\alpha |0\rangle \), has the totally-symmetrized wave function

\[
\sqrt{T} \times \phi_{\alpha \ldots \omega}(x_1, \ldots, x_N) = \frac{1}{\sqrt{N!}} \sum_{(\bar{\alpha}, \ldots, \bar{\omega})} \phi_{\bar{\alpha}}(x_1) \times \cdots \times \phi_{\bar{\omega}}(x_N).
\]

Dividing both sides of this formula by the \(\sqrt{T} \) factor, we immediately arrive at the second line of eq. (15).

Finally, the top line of eq. (15) obtains from the bottom line by adding up coincident terms. Indeed, if some one-particle states appear multiple times in the list \((\alpha, \ldots, \omega) \), then permuting coincident entries of this list has no effect. Altogether, there \(T \) such trivial permutations. By group theory, this means that out of \(N! \) possible permutations of the list, there are only \(N!/T \) distinct permutations. But for each distinct permutations, there are \(T \) coincident terms in the sum on the bottom line of eq. (15). Adding them up gives us the top line of eq. (15).
Problem 3(d):
Let $A_{\alpha \beta} = \langle \alpha | \hat{A}_1 | \beta \rangle$. Since states $|\alpha\rangle$ make a complete basis of the 1-particle Hilbert space, for any 1-particle states $\langle \tilde{\psi} |$ and $|\psi\rangle$

$$
\langle \tilde{\psi} | \hat{A}_1 | \psi \rangle = \sum_{\alpha, \beta} A_{\alpha \beta} \langle \tilde{\psi} | \alpha \rangle \langle \beta | \psi \rangle = \sum_{\alpha, \beta} A_{\alpha \beta} \times \int d^3 \tilde{x} \tilde{\psi}^*(\tilde{x}) \phi_{\alpha}(\tilde{x}) \times \int d^3 x \phi_{\beta}^*(x) \psi(x). \quad (S.79)
$$

This is undergraduate-level QM.

In the N-particle Hilbert space we have a similar formula for the matrix elements of the \hat{A}_1 acting on particle $#i$, the only modification being integrals over the coordinates of the other particles,

$$
\langle N, \tilde{\psi} | \hat{A}_1(i^{th}) | N, \psi \rangle = \int \cdots \int d^3 x_1 \cdots d^3 x_i \cdots d^3 x_N \sum_{\alpha, \beta} A_{\alpha \beta} \times \left(\int d^3 x_i \tilde{\psi}^*(x_i, \ldots, \tilde{x}_i, \ldots, x_N) \phi_{\alpha}(\tilde{x}_i) \right)
\times \left(\int d^3 x_i \phi_{\beta}^*(x_i) \psi(x_1, \ldots, x_i, \ldots, x_N) \right)
\sum_{\alpha, \beta} A_{\alpha \beta} \times \int \cdots \int d^3 x_1 \cdots d^3 x_i \cdots d^3 x_N \tilde{\psi}^*(x_1, \ldots, \tilde{x}_i, \ldots, x_N) \times \phi_{\alpha}(\tilde{x}_i)
\times \phi_{\beta}^*(x_i) \times \psi(x_1, \ldots, x_i, \ldots, x_N). \quad (S.80)
$$

For symmetric wave-functions of identical bosons, we get the same matrix element regardless of which particle $#i$ we are acting on with the operator \hat{A}_1, hence for the net A operator (5.9),

$$
\langle N, \tilde{\psi} | \hat{A}_1^{(1)}_{\text{net}} | N, \psi \rangle = N \times \sum_{\alpha, \beta} A_{\alpha \beta} \times \int \cdots \int d^3 x_1 \cdots d^3 x_{N-1} d^3 x_N d^3 \tilde{x}_N
\tilde{\psi}^*(x_1, \ldots, x_{N-1}, \tilde{x}_N) \times \phi_{\alpha}(\tilde{x}_N)
\times \phi_{\beta}^*(x_N) \times \psi(x_1, \ldots, x_{N-1}, x_N). \quad (S.81)
$$

Now consider matrix elements of the Fock-space operator (20). In light of eq. (17), the state $|N - 1, \psi''\rangle = \hat{a}_\beta |N, \psi\rangle$ has wave-function

$$
\psi''(x_1, \ldots, x_{N-1}) = \sqrt{N} \int d^3 x_N \phi_{\beta}^*(x_N) \times \psi(x_1, \ldots, x_{N-1}, x_N). \quad (S.82)
$$
Likewise, the state $|N - 1, \tilde{\psi}'\rangle = \hat{a}_\alpha |N, \tilde{\psi}\rangle$ has wave-function

$$
\tilde{\psi}'(x_1, \ldots, x_{N-1}) = \sqrt{N} \int d^3 \tilde{x}_N \phi_\alpha^*(\tilde{x}_N) \times \tilde{\psi}(x_1, \ldots, x_{N-1}, \tilde{x}_N).
$$

Consequently,

$$
\langle N, \tilde{\psi}| \hat{a}_\alpha^\dagger \hat{a}_\beta |N, \psi\rangle = \langle N - 1, \tilde{\psi}'| |N - 1, \psi''\rangle
= \int \cdots \int d^3 x_1 \cdots x_{N-1} \tilde{\psi}''(x_1, \ldots, x_{N-1}) \times \tilde{\psi}''(x_1, \ldots, x_{N-1})
= \int \cdots \int d^3 x_1 \cdots x_{N-1} \sqrt{N} \int d^3 \tilde{x}_N \phi_\alpha(\tilde{x}_N) \times \tilde{\psi}^*(x_1, \ldots, x_{N-1}, \tilde{x}_N) \times
\times \sqrt{N} \int d^3 \tilde{x}_N \phi_\beta^*(\tilde{x}_N) \times \psi(x_1, \ldots, x_{N-1}, x_N).
$$

Comparing this formula to the integrals in eq. (S.81), we see that

$$
\langle N, \tilde{\psi}| \hat{A}_{\text{net}}^{(1)} |N, \psi\rangle = \sum_{\alpha, \beta} A_{\alpha \beta} \times \langle N, \tilde{\psi}| \hat{a}_\alpha^\dagger \hat{a}_\beta |N, \psi\rangle = \langle N, \tilde{\psi}| \hat{A}_{\text{net}}^{(2)} |N, \psi\rangle.
$$

Q.E.D.

Problem 3(e):
This part follows from the commutator (S.3) in problem 1(a). Indeed, given

$$
\hat{A}_{\text{tot}}^{(2)} = \sum_{\alpha, \beta} \langle \alpha | \hat{A}_1 | \beta \rangle \hat{a}_\alpha^\dagger \hat{a}_\beta
$$

and

$$
\hat{B}_{\text{tot}}^{(2)} = \sum_{\gamma, \delta} \langle \gamma | \hat{B}_1 | \delta \rangle \hat{a}_\gamma^\dagger \hat{a}_\delta,
$$
we immediately have

\[
\left[\hat{A}_{\text{tot}}^{(2)}, \hat{B}_{\text{tot}}^{(2)} \right] = \sum_{\alpha,\beta,\gamma,\delta} \langle \alpha| \hat{A}_1 | \beta \rangle \langle \gamma| \hat{B}_1 | \delta \rangle \left[\hat{a}^\dagger_\alpha \hat{a}_\beta, \hat{a}^\dagger_\gamma \hat{a}_\delta \right]
\]

\[
\langle \text{using \ (S.3)} \rangle
\]

\[
= \sum_{\alpha,\beta,\gamma,\delta} \langle \alpha| \hat{A}_1 | \beta \rangle \langle \gamma| \hat{B}_1 | \delta \rangle \left(\delta_{\beta,\gamma} \delta_{\alpha,\delta} - \delta_{\alpha,\delta} \delta_{\beta,\gamma} \right)
\]

\[
= \sum_{\alpha,\beta,\gamma,\delta} \hat{a}^\dagger_\alpha \hat{a}_\delta \times \sum_{\beta=\gamma} \langle \alpha| \hat{A}_1 | \gamma \rangle \langle \gamma| \hat{B}_1 | \delta \rangle - \sum_{\beta,\gamma} \hat{a}^\dagger_\gamma \hat{a}_\beta \times \sum_{\alpha=\delta} \langle \gamma| \hat{B}_1 | \alpha \rangle \langle \alpha| \hat{A}_1 | \beta \rangle
\]

\[
\langle \text{renaming summation indices} \rangle
\]

\[
= \sum_{\alpha,\beta} \hat{a}^\dagger_\alpha \hat{a}_\beta \times \left(\langle \alpha| \hat{A}_1 \hat{B}_1 | \beta \rangle - \langle \alpha| \hat{B}_1 \hat{A}_1 | \beta \rangle \right)
\]

\[
= \sum_{\alpha,\beta} \hat{a}^\dagger_\alpha \hat{a}_\beta \times \langle \alpha| \left[\hat{A}_1, \hat{B}_1 \right] = \hat{C}_1 \rangle | \beta \rangle \equiv \hat{C}^{(2)}_{\text{tot}}.
\]

(S.88)

Problem 3(f):

This works similarly to part (d), except for more integrals 😊. Let

\[
B_{\alpha\beta,\gamma\delta} = \left(\langle \alpha| \otimes \langle \beta| \right) \hat{B}_2 \left(| \gamma \rangle \otimes | \delta \rangle \right)
\]

(S.89)

be matrix elements of a two-body operator \(\hat{B}_2 \) between *un-symmetrized* two-particle states. Then for generic two-particle states \(|\tilde{\psi}\rangle \) and \(|\psi\rangle \) — symmetric or not — we have

\[
\langle \tilde{\psi}| \hat{B}_2 |\psi\rangle = \sum_{\alpha,\beta,\gamma,\delta} B_{\alpha\beta,\gamma\delta} \times \langle \tilde{\psi}| (|\alpha\rangle \otimes |\beta\rangle) \times (\langle \gamma| \otimes \langle \delta|) |\psi\rangle
\]

\[
= \sum_{\alpha,\beta,\gamma,\delta} B_{\alpha\beta,\gamma\delta} \times \int d^3\bar{x}_1 d^3\bar{x}_2 \tilde{\psi}^* (\bar{x}_1, \bar{x}_2) \phi_\alpha (\bar{x}_1) \phi_\beta (\bar{x}_2)
\]

\[
\times \int d^3x_1 d^3x_2 \phi^*_\gamma (x_1) \phi^*_\delta (x_2) \psi (x_1, x_2).
\]

(S.90)

Similarly, in the Hilbert space of \(N > 2 \) particles — identical bosons or not — the operator \(\hat{B}_2 \)
acting on particles \#i and \#j has matrix elements

\[
\langle N, \tilde{\psi} | \hat{B}_2(i^{\text{th}}, j^{\text{th}}) | N, \psi \rangle = \sum_{\alpha, \beta, \gamma, \delta} B_{\alpha\beta\gamma\delta} \times \int \cdots \int d^3x_1 \cdots d^3x_i \cdots d^3x_{N-1} \cdots d^3x_N \int d^3x_i d^3x_j \tilde{\psi}^*(x_1, \ldots, x_i, \ldots, x_j, \ldots, x_N) \phi_\alpha(\tilde{x}_i) \phi_\beta(\tilde{x}_j) \times \int d^3x_i d^3x_j \phi_\gamma^*(x_i) \phi_\delta^*(x_j) \psi(x_1, \ldots, x_i, \ldots, x_j, \ldots, x_N)
\]

For identical bosons — and hence totally symmetric wave-functions \(\psi\) and \(\tilde{\psi}\) — such matrix elements do not depend on the choice of particles on which \(\hat{B}_2\) acts, so we may just as well let \(i = N - 1\) and \(j = N\). Consequently, the net \(\hat{B}\) operator (21) has matrix elements

\[
\langle N, \tilde{\psi} | \hat{B}_{\text{net}}^{(1)} | N, \psi \rangle = \frac{N(N-1)}{2} \times \langle N, \tilde{\psi} | \hat{B}_2(N-1, N) | N, \psi \rangle = \frac{N(N-1)}{2} \sum_{\alpha, \beta, \gamma, \delta} B_{\alpha\beta\gamma\delta} \times I_{\alpha\beta\gamma\delta}
\]

where

\[
I_{\alpha\beta\gamma\delta} = \int \cdots \int d^3x_1 \cdots d^3x_{N-2} \int d^3x_{N-1} d^3x_N \tilde{\psi}^*(x_1, \ldots, x_{N-2}, x_{N-1}, x_N) \phi_\alpha(\tilde{x}_{N-1}) \phi_\beta(\tilde{x}_N) \times \int d^3x_{N-1} d^3x_N \phi_\gamma^*(x_{N-1}) \phi_\delta^*(x_N) \psi(x_1, \ldots, x_{N-2}, x_{N-1}, x_N)
\]

Now let’s compare this to the Fock space formalism. Applying eq. (17) twice, we find that the \((N - 2)\)–particle state

\[
| N - 2, \psi''' \rangle = \hat{a}_\delta \hat{a}_\gamma | N, \psi \rangle
\]

has wave function

\[
\psi'''(x_1, \ldots, x_{N-2}) = \sqrt{N(N-1)} \int d^3x_{N-1} d^3x_N \phi_\gamma^*(x_{N-1}) \phi_\delta^*(x_N) \times \psi(x_1, \ldots, x_{N-2}, x_{N-1}, x_N).
\]

Likewise, the \((N - 2)\)–particle state

\[
| N - 2, \tilde{\psi}''' \rangle = \hat{a}_\delta \hat{a}_\alpha | N, \tilde{\psi} \rangle
\]
has wave function

\[
\psi'''(x_1, \ldots, x_{N-2}) = \sqrt{N(N-1)} \int \cdots \int d^3x_{N-1} d^3x_N \phi^*_\alpha(\bar{x}_{N-1}) \phi^*_\alpha(\bar{x}_N) \\
\times \tilde{\psi}(x_1, \ldots, x_{N-2}, \bar{x}_{N-1}, \bar{x}_N).
\]

(S.96)

Taking Dirac product of these two states, we obtain

\[
\langle N, \tilde{\psi} | \hat{A}^\dagger_\alpha \hat{A}^\dagger_\beta \hat{A}_\delta \hat{A}_\gamma | N, \psi \rangle = \langle N - 2, \tilde{\psi}''' | N - 2, \psi''' \rangle = \int \cdots \int d^3x_1 \cdots d^3x_{N-2} \psi'''(x_1, \ldots, x_{N-2}) \times \psi'''(x_1, \ldots, x_{N-2}) \\
= N(N-1) \times I_{\alpha,\beta,\gamma,\delta}
\]

(S.97)

where \(I_{\alpha,\beta,\gamma,\delta} \) is exactly the same mega-integral as in eq. (S.92). Therefore,

\[
\langle N, \tilde{\psi} | \hat{B}^{(1)}_{\text{net}} | N, \psi \rangle = \frac{1}{2} \sum_{\alpha,\beta,\gamma,\delta} \langle N, \tilde{\psi} | \hat{A}^\dagger_\alpha \hat{A}^\dagger_\beta \hat{A}_\delta \hat{A}_\gamma | N, \psi \rangle = \langle N, \tilde{\psi} | \hat{B}^{(2)}_{\text{net}} | N, \psi \rangle
\]

(S.98)

where the second equality follows from eq. (22). \(Q.E.D. \)

Problem 3(g):

In the Fock space,

\[
\hat{A}^{(2)}_{\text{tot}} = \sum_{\mu,\nu} \langle \mu | \hat{A}_1 | \nu \rangle \hat{a}^\dagger_\mu \hat{a}_\nu
\]

(20)

and

\[
\hat{B}^{(2)}_{\text{tot}} = \frac{1}{2} \sum_{\alpha,\beta,\gamma,\delta} \langle \alpha \otimes \beta | \hat{B}_2 | \gamma \otimes \delta \rangle \hat{a}^\dagger_\alpha \hat{a}^\dagger_\beta \hat{a}_\gamma \hat{a}_\delta,
\]

(22)

where \(\langle \alpha \otimes \beta \rangle \) is a short-hand for the un-symmetrized two-particle wave function \((|\alpha\rangle \otimes |\beta\rangle) \)
and likewise $|\gamma \otimes \delta\rangle = (|\gamma \rangle \otimes |\delta\rangle)$. Therefore,

$$
[\hat{A}_{\text{tot}}^{(2)}, \hat{B}_{\text{tot}}^{(2)}] = \frac{1}{2} \sum_{\mu, \nu, \alpha, \beta, \gamma, \delta} \langle \mu | \hat{A}_1 | \nu \rangle \langle \alpha \otimes \beta | \hat{B}_2 | \gamma \otimes \delta \rangle \left[\hat{a}_\mu^\dagger \hat{a}_\nu, \hat{a}_\alpha^\dagger \hat{a}_\beta \right]
$$

\[\text{using eq. (S.4)}\]

$$
= \frac{1}{2} \sum_{\mu, \nu, \alpha, \beta, \gamma, \delta} \hat{a}_\mu^\dagger \hat{a}_\beta \hat{a}_\gamma \hat{a}_\delta \times \sum_{\nu} \langle \mu | \hat{A}_1 | \nu \rangle \langle \nu \otimes \beta | \hat{B}_2 | \gamma \otimes \delta \rangle
$$

$$
+ \frac{1}{2} \sum_{\alpha, \mu, \gamma, \delta} \hat{a}_\alpha^\dagger \hat{a}_\mu \hat{a}_\gamma \hat{a}_\delta \times \sum_{\nu} \langle \mu | \hat{A}_1 | \nu \rangle \langle \alpha \otimes \nu | \hat{B}_2 | \gamma \otimes \delta \rangle
$$

$$
- \frac{1}{2} \sum_{\alpha, \beta, \nu, \delta} \hat{a}_\alpha^\dagger \hat{a}_\beta \hat{a}_\nu \hat{a}_\delta \times \sum_{\mu} \langle \alpha \otimes \beta | \hat{B}_2 | \mu \otimes \delta \rangle \langle \mu | \hat{A}_1 | \nu \rangle
$$

$$
- \frac{1}{2} \sum_{\alpha, \beta, \gamma, \nu} \hat{a}_\alpha^\dagger \hat{a}_\beta \hat{a}_\gamma \hat{a}_\nu \times \sum_{\mu} \langle \alpha \otimes \beta | \hat{B}_2 | \gamma \otimes \mu \rangle \langle \mu | \hat{A}_1 | \nu \rangle
$$

\[\text{using eq. (S.4)}\]

$$
= \frac{1}{2} \sum_{\alpha, \beta, \gamma, \delta} \hat{a}_\alpha^\dagger \hat{a}_\beta \hat{a}_\gamma \hat{a}_\delta \times C_{\alpha, \beta, \gamma, \delta},
$$

where

$$
C_{\alpha, \beta, \gamma, \delta} = \sum_\lambda \langle \alpha | \hat{A}_1 | \lambda \rangle \langle \lambda \otimes \beta | \hat{B}_2 | \gamma \otimes \delta \rangle + \sum_\lambda \langle \beta | \hat{A}_1 | \lambda \rangle \langle \alpha \otimes \lambda | \hat{B}_2 | \gamma \otimes \delta \rangle
$$

$$
- \sum_\lambda \langle \alpha \otimes \beta | \hat{B}_2 | \lambda \otimes \delta \rangle \langle \lambda | \hat{A}_1 | \gamma \rangle - \sum_\lambda \langle \alpha \otimes \beta | \hat{B}_2 | \gamma \otimes \lambda \rangle \langle \lambda | \hat{A}_1 | \delta \rangle
$$

$$
= \langle \alpha \otimes \beta | \left(\hat{A}_1^{(1st)} \hat{B}_2 + \hat{A}_1^{(2nd)} \hat{B}_2 - \hat{B}_2 \hat{A}_1^{(1st)} - \hat{B}_2 \hat{A}_1^{(2nd)} \right) | \gamma \otimes \delta \rangle
$$

$$
= \langle \alpha \otimes \beta | \left(\hat{A}_1^{(1st)} + \hat{A}_1^{(2nd)} \right) | \gamma \otimes \delta \rangle \equiv \langle \alpha \otimes \beta | \hat{C}_2 | \gamma \otimes \delta \rangle.
$$

Consequently, $[\hat{A}_{\text{tot}}^{(2)}, \hat{B}_{\text{tot}}^{(2)}] = \hat{C}_{\text{tot}}^{(2)}. \quad Q.E.D.$