Dirac Matrices and Lorentz Spinors

Background: In 3D, the spinor $j = \frac{1}{2}$ representation of the Spin(3) rotation group is constructed from the Pauli matrices σ^x, σ^y, and σ^z, which obey both commutation and anticommutation relations

$$[\sigma^i, \sigma^j] = 2i\epsilon^{ijk}\sigma^k \quad \text{and} \quad \{\sigma^i, \sigma^j\} = 2\delta^{ij} \times 1_{2 \times 2}.$$ \hspace{1cm} (1)$$

Consequently, the spin matrices

$$S = -\frac{i}{2} \sigma \times \sigma = \frac{1}{2} \sigma$$ \hspace{1cm} (2)$$

commute with each other like angular momenta, $[S^i, S^j] = i\epsilon^{ijk}S^k$, so they represent the generators of the rotation group. In this spinor representation, the finite rotations $R(\phi, n)$ are represented by

$$M(R) = \exp(-i\phi n \cdot S),$$ \hspace{1cm} (3)$$

while the spin matrices themselves transform into each other as components of a 3–vector,

$$M^{-1}(R)S^i M(R) = R^{ij}S^j.$$ \hspace{1cm} (4)$$

In this note, I shall generalize this construction to the Dirac spinor representation of the Lorentz symmetry Spin(3,1).

The Dirac Matrices γ^μ generalize the anti-commutation properties of the Pauli matrices σ^i to the $3 + 1$ Minkowski dimensions:

$$\gamma^\mu \gamma^\nu + \gamma^\nu \gamma^\mu = 2g^{\mu\nu} \times 1_{4 \times 4}.$$ \hspace{1cm} (5)$$

The γ^μ are 4×4 matrices, but there are several different conventions for their specific form. In my class I shall follow the same convention as the Peskin & Schroeder textbook, namely
the Weyl convention where in 2×2 block notations

$$\gamma^0 = \begin{pmatrix} 0 & 1_{2\times2} \\ 1_{2\times2} & 0 \end{pmatrix}, \quad \vec{\gamma} = \begin{pmatrix} 0 & +\vec{\sigma} \\ -\vec{\sigma} & 0 \end{pmatrix}. \quad (6)$$

Note that the γ^0 matrix is hermitian while the γ^1, γ^2, and γ^3 matrices are anti-hermitian. Apart from that, the specific forms of the matrices are not important, the Physics follows from the anti-commutation relations (5).

The Lorentz spin matrices generalize $S = -\frac{i}{2} \sigma \times \sigma$ rather than $S = \frac{1}{2} \sigma$. In 4D, the vector product becomes the antisymmetric tensor product, so we define

$$S^{\mu\nu} = -S^{\nu\mu} \overset{\text{def}}{=} \frac{i}{4} [\gamma^\mu, \gamma^\nu]. \quad (7)$$

Thanks to the anti-commutation relations (5) for the γ^μ matrices, the $S^{\mu\nu}$ obey the commutation relations of the Lorentz generators $\hat{J}^{\mu\nu} = -\hat{J}^{\nu\mu}$. Moreover, the commutation relations of the spin matrices $S^{\mu\nu}$ with the Dirac matrices γ^μ are similar to the commutation relations of the $\hat{J}^{\mu\nu}$ with a Lorentz vector such as \hat{P}^μ.

Lemma:

$$[\gamma^\lambda, S^{\mu\nu}] = i g^{\lambda\mu} \gamma^\nu - i g^{\lambda\nu} \gamma^\mu. \quad (8)$$

Proof: Combining the definition (7) of the spin matrices as commutators with the anti-commutation relations (5), we have

$$\gamma^\mu \gamma^\nu = \frac{1}{2} \{\gamma^\mu, \gamma^\nu\} + \frac{1}{2} [\gamma^\mu, \gamma^\nu] = g^{\mu\nu} \times 1_{4\times4} - 2i S^{\mu\nu}. \quad (9)$$

Since the unit matrix commutes with everything, we have

$$[X, S^{\mu\nu}] = \frac{i}{2} [X, \gamma^\mu \gamma^\nu] \quad \text{for any matrix } X, \quad (10)$$

and the commutator on the RHS may often be obtained from the Leibniz rules for the commutators or anticommutators:

$$\{A, BC\} = [A, B]C + B\{A, C\} = \{A, B\}C - B[A, C]. \quad (11)$$
In particular,
\[
[\gamma^\lambda, \gamma^\mu \gamma^\nu] = \{\gamma^\lambda, \gamma^\mu\} \gamma^\nu - \gamma^\mu \{\gamma^\lambda, \gamma^\nu\} = 2g^{\lambda\mu} \gamma^\nu - 2g^{\lambda\nu} \gamma^\mu
\]
(12)
and hence
\[
[\gamma^\lambda, S^{\mu\nu}] = \frac{i}{2} [\gamma^\lambda, \gamma^\mu \gamma^\nu] = ig^{\lambda\mu} \gamma^\nu - ig^{\lambda\nu} \gamma^\mu.
\]
(13)

Quod erat demonstrandum.

Theorem: The $S^{\mu\nu}$ matrices commute with each other like Lorentz generators,
\[
[S^{\kappa\lambda}, S^{\mu\nu}] = ig^{\lambda\mu} S^{\kappa\nu} - ig^{\lambda\nu} S^{\kappa\mu} - ig^{\kappa\mu} S^{\lambda\nu} + ig^{\kappa\nu} S^{\lambda\mu}.
\]
(14)

Proof: Again, we use the Leibniz rule and eq. (9):
\[
[S^{\kappa\lambda}, S^{\mu\nu}] = \gamma^\kappa [\gamma^\lambda, S^{\mu\nu}] + [\gamma^\kappa, S^{\mu\nu}] \gamma^\lambda
\]
\[
= \gamma^\kappa (ig^{\lambda\mu} \gamma^\nu - ig^{\lambda\nu} \gamma^\mu) + (ig^{\kappa\mu} \gamma^\nu - ig^{\kappa\nu} \gamma^\mu) \gamma^\lambda
\]
\[
= ig^{\lambda\mu} (\gamma^\kappa \gamma^\lambda = g^{\kappa\nu} - 2iS^{\kappa\nu}) - ig^{\lambda\nu} (\gamma^\kappa \gamma^\lambda = g^{\kappa\mu} - 2iS^{\kappa\mu})
\]
\[
+ ig^{\kappa\mu} (\gamma^\nu \gamma^\lambda = g^{\lambda\nu} + 2iS^{\lambda\nu}) - ig^{\kappa\nu} (\gamma^\mu \gamma^\lambda = g^{\lambda\mu} + 2iS^{\lambda\mu})
\]
\[
= 2g^{\lambda\mu} S^{\kappa\nu} - 2g^{\lambda\nu} S^{\kappa\mu} - 2g^{\kappa\mu} S^{\lambda\nu} + 2g^{\kappa\nu} S^{\lambda\mu}
\]
(15)
since all the \(\pm ig^{\cdots} g^{-\cdot}\) cancel each other, hence
\[
[S^{\kappa\lambda}, S^{\mu\nu}] = \frac{i}{2} [\gamma^\kappa \gamma^\lambda, S^{\mu\nu}] = ig^{\lambda\mu} S^{\kappa\nu} - ig^{\lambda\nu} S^{\kappa\mu} - ig^{\kappa\mu} S^{\lambda\nu} + ig^{\kappa\nu} S^{\lambda\mu}.
\]
(16)

Quod erat demonstrandum.

In light of this theorem, the $S^{\mu\nu}$ matrices represent the Lorentz generators \(J^{\mu\nu}\) in the 4-component spinor multiplet.
Finite Lorentz transforms:
Any continuous Lorentz transform — a rotation, or a boost, or a product of a boost and a rotation — obtains from exponentiating an infinitesimal symmetry

\[X'\mu = X\mu + \epsilon^{\mu\nu}X_{\nu} \]

(17)

where the infinitesimal \(\epsilon^{\mu\nu} \) matrix is antisymmetric when both indices are raised (or both lowered), \(\epsilon^{\mu\nu} = -\epsilon^{\nu\mu} \). Thus, the \(L_{\mu}^\nu \) matrix of any continuous Lorentz transform is a matrix exponential

\[L_{\nu}^\mu = \exp(\Theta)_{\nu}^\mu \equiv \delta_{\nu}^\mu + \Theta_{\nu}^\mu + \frac{1}{2}\Theta_{\lambda}^\mu \Theta_{\nu}^\lambda + \frac{1}{6}\Theta_{\lambda}^\mu \Theta_{\kappa}^\lambda \Theta_{\nu}^\kappa + \cdots \]

(18)

of some matrix \(\Theta \) that becomes antisymmetric when both of its indices are raised or lowered, \(\Theta^{\mu\nu} = -\Theta^{\nu\mu} \). Note however that in the matrix exponential (18), the first index of \(\Theta \) is raised while the second index is lowered, so the antisymmetry condition becomes \((g \Theta)^T = -(g \Theta) \) instead of \(\Theta^T = -\Theta \).

The Dirac spinor representation of the finite Lorentz transform (18) is the \(4 \times 4 \) matrix

\[M_D(L) = \exp(-i\theta_{\alpha\beta}S^{\alpha\beta}). \]

(19)

The group law for such matrices

\[\forall L_1, L_2 \in SO^+(3,1), \quad M_D(L_2 L_1) = M_D(L_2)M_D(L_1) \]

(20)

follows automatically from the \(S^{\mu\nu} \) satisfying the commutation relations (14) of the Lorentz generators, so I am not going to prove it. Instead, let me show that when the Dirac matrices \(\gamma^{\mu} \) are sandwiched between the \(M_D(L) \) and its inverse, they transform into each other as components of a Lorentz 4–vector,

\[M_D^{-1}(L)\gamma^{\mu}M_D(L) = L_{\nu}^\mu\gamma^{\nu}. \]

(21)

This formula makes the Dirac equation transform covariantly under the Lorentz transforms.
Proof: In light of the exponential form (19) of the matrix $M_D(L)$ representing a finite Lorentz transform in the Dirac spinor multiplet, let’s use the multiple commutator formula (AKA the Hadamard Lemma): for any 2 matrices F and H,

$$\exp(-F)H\exp(+F) = H + [H, F] + \frac{1}{2} [[H, F], F] + \frac{1}{6} [[[H, F], F], F] + \cdots.$$ (22)

In particular, let $H = \gamma^\mu$ while $F = -\frac{i}{2} \Theta_{\alpha\beta} S^{\alpha\beta}$ so that $M_D(L) = \exp(+F)$ and $M_D^{-1}(L) = \exp(-F)$. Consequently,

$$M_D^{-1}(L)\gamma^\mu M_D(L) = \gamma^\mu + [\gamma^\mu, F] + \frac{1}{2} [[\gamma^\mu, F], F] + \frac{1}{6} [[[\gamma^\mu, F], F], F] + \cdots.$$ (23)

where all the multiple commutators turn out to be linear combinations of the Dirac matrices. Indeed, the single commutator here is

$$[\gamma^\mu, F] = -\frac{i}{2} \Theta_{\alpha\beta} [\gamma^\mu, S^{\alpha\beta}] = -\frac{1}{2} \Theta_{\alpha\beta} (g^{\mu\alpha} \gamma^\beta - g^{\mu\beta} \gamma^\alpha) = \Theta_{\alpha\beta} g^{\mu\alpha} \gamma^\beta = \Theta^\mu_{\lambda} \gamma^\lambda,$$ (24)

while the multiple commutators follow by iterating this formula:

$$[[\gamma^\mu, F], F] = \Theta^\mu_{\lambda} [\gamma^\lambda, F] = \Theta^\mu_{\lambda} \Theta^\lambda_{\nu} \gamma^\nu, \quad [[[\gamma^\mu, F], F], F] = \Theta^\mu_{\lambda} \Theta^\lambda_{\rho} \Theta^\rho_{\nu} \gamma^\nu, \ldots.$$ (25)

Combining all these commutators as in eq. (23), we obtain

$$M_D^{-1}\gamma^\mu M_D = \gamma^\mu + [\gamma^\mu, F] + \frac{1}{2} [[\gamma^\mu, F], F] + \frac{1}{6} [[[\gamma^\mu, F], F], F] + \cdots$$

$$= \gamma^\mu + \Theta^\mu_{\nu} \gamma^\nu + \frac{1}{2} \Theta^\mu_{\lambda} \Theta^\lambda_{\nu} \gamma^\nu + \frac{1}{6} \Theta^\mu_{\lambda} \Theta^\lambda_{\rho} \Theta^\rho_{\nu} \gamma^\nu + \cdots$$

$$= \left(\delta^\mu_{\nu} + \Theta^\mu_{\nu} + \frac{1}{2} \Theta^\mu_{\lambda} \Theta^\lambda_{\nu} + \frac{1}{6} \Theta^\mu_{\lambda} \Theta^\lambda_{\rho} \Theta^\rho_{\nu} + \cdots\right)\gamma^\nu$$

$$\equiv L^\mu_{\nu} \gamma^\nu.$$ (26)

Quod erat demonstrandum.
Dirac Equation and Dirac Spinor Fields

History:
Originally, the Klein–Gordon equation was thought to be the relativistic version of the Schrödinger equation — that is, an equation for the wave function $\psi(x, t)$ for one relativistic particle. But pretty soon this interpretation run into trouble with bad probabilities (negative, or > 1) when a particle travels through high potential barriers or deep potential wells. There were also troubles with relativistic causality, and a few other things.

Paul Adrien Maurice Dirac had thought that the source of all those troubles was the ugly form of relativistic Hamiltonian $\hat{H} = \sqrt{\hat{p}^2 + m^2}$ in the coordinate basis, and that he could solve all the problems with the Klein-Gordon equation by rewriting the Hamiltonian as a first-order differential operator

$$\hat{H} = \hat{p} \cdot \vec{\alpha} + m \beta \implies \text{Dirac equation } i \frac{\partial \psi}{\partial t} = -i \vec{\alpha} \cdot \nabla \psi + m \beta \psi \quad (27)$$

where $\alpha_1, \alpha_2, \alpha_3, \beta$ are matrices acting on a multi-component wave function. Specifically, all four of these matrices are Hermitian, square to 1, and anticommute with each other,

$$\{\alpha_i, \alpha_j\} = 2 \delta_{ij}, \quad \{\alpha_i, \beta\} = 0, \quad \beta^2 = 1. \quad (28)$$

Consequently

$$(\vec{\alpha} \cdot \hat{p})^2 = \alpha_i \alpha_j \times \hat{p}_i \hat{p}_j = \frac{1}{2} \{\alpha_i, \alpha_j\} \times \hat{p}_i \hat{p}_j = \delta_{ij} \times \hat{p}_i \hat{p}_j = \hat{p}^2, \quad (29)$$

and therefore

$$\hat{H}_{\text{Dirac}}^2 = (\vec{\alpha} \cdot \hat{p} + \beta m)^2 = (\vec{\alpha} \cdot \hat{p})^2 + \{\alpha_i, \beta\} \times \hat{p}_i m + \beta^2 \times m^2 = \hat{p}^2 + 0 + m^2. \quad (30)$$

This, the Dirac Hamiltonian squares to $\hat{p}^2 + m^2$, as it should for the relativistic particle.

The Dirac equation (27) turned out to be a much better description of a relativistic electron (which has spin $= \frac{1}{2}$) than the Klein–Gordon equation. However, it did not resolve the troubles with relativistic causality or bad probabilities for electrons going through big potential differences $e \Delta \Phi > 2m_e c^2$. Those problems are not solvable in the context of a relativistic single-particle quantum mechanics but only in the quantum field theory.
Modern point of view:

Today, we interpret the Dirac equation as the equation of motion for a Dirac spinor field \(\Psi(x) \), comprising 4 complex component fields \(\Psi_\alpha(x) \) arranged in a column vector

\[
\Psi(x) = \begin{pmatrix}
\Psi_1(x) \\
\Psi_2(x) \\
\Psi_3(x) \\
\Psi_4(x)
\end{pmatrix},
\]

and transforming under the continuous Lorentz symmetries \(x'\mu = L_\nu x^\nu \) according to

\[
\Psi'(x') = M_D(L)\Psi(x).
\]

The classical Euler–Lagrange equation of motion for the spinor field is the Dirac equation

\[
i \frac{\partial}{\partial t} \Psi + i\vec{\alpha} \cdot \nabla \Psi - m\beta \Psi = 0.
\]

To recast this equation in a Lorentz-covariant form, let

\[
\beta = \gamma^0, \quad \alpha^i = \gamma^0 \gamma^i;
\]

it is easy to see that if the \(\gamma^\mu \) matrices obey the anticommutation relations (5) then the \(\vec{\alpha} \) and \(\beta \) matrices obey the relations (28) and vice versa. Now let’s multiply the whole LHS of the Dirac equation (33) by the \(\beta = \gamma^0 \):

\[
0 = \gamma^0 \left(i\partial_0 + i\gamma^0 \vec{\gamma} \cdot \nabla - m\gamma^0 \right) \Psi(x) = \left(i\gamma^0 \partial_0 + i\gamma^i \partial_i - m \right) \Psi(x),
\]

and hence

\[
\left(i\gamma^\mu \partial_\mu - m \right) \Psi(x) = 0.
\]

As expected from \(\hat{H}_{\text{Dirac}}^2 = \hat{p}^2 + m^2 \), the Dirac equation for the spinor field implies the Klein–Gordon equation for each component \(\Psi_\alpha(x) \). Indeed, if \(\Psi(x) \) obey the Dirac equation,
then obviously
\[(−iγ^\nu\partial_\nu − m) \times (iγ^\mu\partial_\mu − m)Ψ(x) = 0, \quad (37)\]
buts the differential operator on the LHS is equal to the Klein–Gordon \(m^2 + \partial^2\) times a unit matrix:
\[(−iγ^\nu\partial_\nu − m)(iγ^\mu\partial_\mu − m) = m^2 + γ^\nuγ^\mu\partial_\nu\partial_\mu = m^2 + γ^\nuγ^\mu\partial_\nu\partial_\mu. \quad (38)\]

The Dirac equation (36) **transforms covariantly under the Lorentz symmetries** — its LHS transforms exactly like the spinor field itself.

Proof: Note that since the Lorentz symmetries involve the \(x^\mu\) coordinates as well as the spinor field components, the LHS of the Dirac equation becomes
\[(iγ^\mu\partial'_\mu − m)Ψ'(x') \quad (39)\]
where
\[\partial'_\mu \equiv \frac{\partial}{\partial x'_\mu} = \frac{\partial x^\nu}{\partial x'_\mu} \times \frac{\partial}{\partial x^\nu} = (L^{-1})^\nu_\mu × \partial_\nu. \quad (40)\]
Consequently,
\[\partial'_\mu Ψ'(x') = (L^{-1})^\nu_\mu × M_D(L) \partial_\nu Ψ(x) \quad (41)\]
and hence
\[γ^\mu\partial'_\mu Ψ'(x') = (L^{-1})^\nu_\mu × γ^\mu M_D(L) \partial_\nu Ψ(x). \quad (42)\]
But according to eq. (23),
\[M_D^{-1}(L)γ^\mu M_D(L) = L^\mu_\nu γ^\nu \quad \Rightarrow \quad γ^\mu M_D(L) = L^\mu_\nu × M_D(L)γ^\nu \quad \Rightarrow \quad (L^{-1})^\nu_\mu × γ^\mu M_D(L) = M_D(L)γ^\nu, \quad (43)\]
so
\[γ^\mu\partial'_\mu Ψ'(x') = M_D(L) × γ^\nu \partial_\nu Ψ(x). \quad (44)\]
Altogether,
\[(iγ^\mu\partial_\mu − m)Ψ(x) \xrightarrow{\text{Lorentz}} (iγ^\mu\partial'_\mu − m)Ψ'(x') = M_D(L) × (iγ^\mu\partial_\mu − m)Ψ(x), \quad (45)\]
which proves the covariance of the Dirac equation. *Quod erat demonstrandum.*
Dirac Lagrangian

The Dirac equation is a first-order differential equation, so to obtain it as an Euler–Lagrange equation, we need a Lagrangian which is linear rather than quadratic in the spinor field’s derivatives. Thus, we want

\[\mathcal{L} = \overline{\Psi} \times \left(i \gamma^\mu \partial_\mu - m \right) \Psi \]

(46)

where \(\overline{\Psi}(x) \) is some kind of a conjugate field to the \(\Psi(x) \). Since \(\Psi \) is a complex field, we treat \(\Psi \) and \(\overline{\Psi} \) as linearly-independent from each other, so the Euler–Lagrange equation for the \(\overline{\Psi} \) immediately gives us the Dirac equation for the \(\Psi(x) \) field,

\[0 = \frac{\partial \mathcal{L}}{\partial \Psi} - \partial_\mu \frac{\partial \mathcal{L}}{\partial (\partial_\mu \Psi)} = (i \gamma^\nu \partial_\nu - m) \Psi - \partial_\mu (0). \]

(47)

To keep the action \(S = \int d^4x \mathcal{L} \) Lorentz-invariant, the Lagrangian (46) should transform as a Lorentz scalar, \(\mathcal{L}'(x') = \mathcal{L}(x) \). In light of eq. (19) for the \(\Psi(x) \) field and covariance (45) of the Dirac equation, the conjugate field \(\overline{\Psi}(x) \) should transform according to

\[\overline{\Psi}'(x') = \overline{\Psi}(x) \times M_D^{-1}(L) \implies \mathcal{L}'(x') = \mathcal{L}(x). \]

(48)

Note that the \(M_D(L) \) matrix is generally not unitary, so the inverse matrix \(M_D^{-1}(L) \) in eq. (48) is different from the hermitian conjugate \(M_D^\dagger(L) \). Consequently, the conjugate field \(\overline{\Psi}(x) \) cannot be identified with the hermitian conjugate field \(\Psi^\dagger(x) \), since the latter transforms to

\[\Psi^\dagger(x') = \Psi^\dagger(x) \times M_D^\dagger(L) \neq \Psi^\dagger(x) \times M_D^{-1}(L). \]

(49)

Instead of the hermitian conjugate, we are going to use the Dirac conjugate spinor, see below.

Dirac conjugates:

Let \(\Psi \) be a 4-component Dirac spinor and \(\Gamma \) be any \(4 \times 4 \) matrix; we *define* their Dirac conjugates according to

\[\overline{\Psi} = \Psi^\dagger \times \gamma^0, \quad \overline{\Gamma} = \gamma^0 \times \Gamma^\dagger \times \gamma^0. \]

(50)

Thanks to \(\gamma^0 \gamma^0 = 1 \), the Dirac conjugates behave similarly to hermitian conjugates or transposed matrices:
- For a product of 2 matrices, \((\Gamma_1 \times \Gamma_2) = \Gamma_2 \times \Gamma_1 \).
- Likewise, for a matrix and a spinor, \((\Gamma \times \Psi) = \overline{\Psi} \times \Gamma \).
- The Dirac conjugate of a complex number is its complex conjugate, \((c \times 1) = c^* \times 1 \).
- For any two spinors \(\Psi_1 \) and \(\Psi_2 \) and any matrix \(\Gamma \), \(\Psi_1 \Gamma \Psi_2 = (\overline{\Psi}_2 \Gamma \Psi_1)^* \).

 - The Dirac spinor fields are fermionic, so they anticommute with each other, even in the classical limit. Nevertheless, \((\Psi_\alpha \Psi_\beta)^\dagger = +\Psi_\beta \Psi_\alpha \), and therefore for any matrix \(\Gamma \), \(\overline{\Psi}_1 \Gamma \Psi_2 = + (\overline{\Psi}_2 \Gamma \Psi_1)^* \).

The point of the Dirac conjugation (50) is that it works similarly for all four Dirac matrices \(\gamma^\mu \),

\[
\overline{\gamma}^\mu = +\gamma^\mu. \tag{51}
\]

Proof: For \(\mu = 0 \), the \(\gamma^0 \) is hermitian, hence

\[
\overline{\gamma}^0 = \gamma^0 (\gamma^0)^\dagger \gamma^0 = +\gamma^0 \gamma^0 \gamma^0 = +\gamma^0. \tag{52}
\]

For \(\mu = i = 1, 2, 3 \), the \(\gamma^i \) are anti-hermitian and also anticommute with the \(\gamma^0 \), hence

\[
\overline{\gamma}^i = \gamma^0 (\gamma^i)^\dagger \gamma^0 = -\gamma^0 \gamma^i \gamma^0 = +\gamma^0 \gamma^0 \gamma^i = +\gamma^i. \tag{53}
\]

Corollary: The Dirac conjugate of the matrix

\[
M_D(L) = \exp(-\frac{i}{2} \Theta_{\mu\nu} S^{\mu\nu}) \tag{19}
\]

representing any continuous Lorentz symmetry \(L = \exp(\Theta) \) is the inverse matrix

\[
\overline{M}_D(L) = M_D^{-1}(L) = \exp(+\frac{i}{2} \Theta_{\mu\nu} S^{\mu\nu}). \tag{54}
\]

Proof: Let

\[
X = -\frac{i}{2} \Theta_{\mu\nu} S^{\mu\nu} = +\frac{1}{8} \Theta_{\mu\nu} [\gamma^\mu, \gamma^\nu] = +\frac{1}{3} \Theta_{\mu\nu} \gamma^\mu \gamma^\nu \tag{55}
\]

for some real antisymmetric Lorentz parameters \(\Theta_{\mu\nu} = -\Theta_{\nu\mu} \). The Dirac conjugate of the
\(X \) matrix is
\[
\overline{X} = \frac{1}{4} \Theta_{\mu\nu} \gamma^\mu \gamma^\nu = \frac{1}{4} \Theta^{\mu} \gamma_\mu \gamma^\nu = \frac{1}{4} \Theta_{\nu\mu} \gamma^\nu \gamma^\mu = -\frac{1}{4} \Theta_{\mu\nu} \gamma^\mu \gamma^\nu = -X. \quad (56)
\]
Consequently,
\[
\overline{X}^2 = \overline{X} \times \overline{X} = +X^2, \quad \overline{X}^3 = \overline{X} \times \overline{X}^2 = \overline{X}^2 \times \overline{X} = -X^3, \quad \ldots, \quad \overline{X}^n = (-X)^n,
\]
and hence
\[
\exp(\overline{X}) = \sum_n \frac{1}{n!} \overline{X}^n = \sum_n \frac{1}{n!} (-X)^n = \exp(-X). \quad (58)
\]
In light of eq. (55), this means
\[
\exp(-\frac{i}{2} \Theta_{\mu\nu} S_{\mu\nu}) = \exp(+\frac{i}{2} \Theta_{\mu\nu} S_{\mu\nu}),
\]
that is,
\[
\overline{M}_D(L) = M_D^{-1}(L). \quad (60)
\]
Quod erat demonstrandum.

Back to the Dirac Lagrangian:
Thanks to the theorem (60), the conjugate field \(\overline{\Psi}(x) \) in the Lagrangian (46) is simply the Dirac conjugate of the Dirac spinor field \(\Psi(x) \),
\[
\overline{\Psi}(x) = \Psi^\dagger(x) \times \gamma^0, \quad (61)
\]
which transforms under Lorentz symmetries as
\[
\overline{\Psi}'(x') = \overline{\Psi}'(x') = \overline{M}_D(L) \times \overline{\Psi}(x) = \overline{\Psi}(x) \times \overline{M}_D(x) = \overline{\Psi}(x) \times M_D^{-1}(L). \quad (62)
\]
Consequently, the Dirac Lagrangian
\[
\mathcal{L} = \overline{\Psi} \times (i \gamma^\mu \partial_\mu - m) \Psi = \Psi^\dagger \gamma^0 \times (i \gamma^\mu \partial_\mu - m) \Psi \quad (46)
\]
is a Lorentz scalar and the action is Lorentz invariant.
Hamiltonian for the Dirac Field

Canonical quantization of the Dirac spinor field $\Psi(x)$ — just like any other field — begins with the classical Hamiltonian formalism. Let’s start with the canonical conjugate fields,

$$\Pi_\alpha = \frac{\partial \mathcal{L}}{\partial (\partial_0 \Psi_\alpha)} = (i\overline{\Psi}\gamma^0)_\alpha = i\Psi^\dagger_\alpha$$

— the canonical conjugate to the Dirac spinor field $\Psi(x)$ is simply its hermitian conjugate $\Psi^\dagger(x)$. This is similar to what we had for the non-relativistic field, and it happens for the same reason — the Lagrangian which is linear in the time derivative.

In the non-relativistic field theory, the conjugacy relation (63) in the classical theory lead to the equal-time commutation relations in the quantum theory,

$$[\hat{\psi}(x,t), \hat{\psi}(y,t)] = 0, \quad [\hat{\psi}^\dagger(x,t), \hat{\psi}^\dagger(y,t)] = 0, \quad [\hat{\psi}(x,t), \hat{\psi}^\dagger(y,t)] = \delta^{(3)}(x - y). \quad (64)$$

However, the Dirac spinor field describes spin = $\frac{1}{2}$ particles — like electrons, protons, or neutrons — which are fermions rather than bosons. So instead of the commutations relations (64), the spinor fields obey the equal-time anti-commutation relations

$$\begin{align*}
\{\hat{\Psi}_\alpha(x,t), \hat{\Psi}_\beta(y,t)\} &= 0, \\
\{\hat{\Psi}^\dagger_\alpha(x,t), \hat{\Psi}^\dagger_\beta(y,t)\} &= 0, \\
\{\hat{\Psi}_\alpha(x,t), \hat{\Psi}^\dagger_\beta(y,t)\} &= \delta_{\alpha\beta}\delta^{(3)}(x - y). \quad (65)
\end{align*}$$

Next, the classical Hamiltonian obtains as

$$\begin{align*}
H &= \int d^3x \mathcal{H}(x), \\
\mathcal{H} &= i\Psi^\dagger \partial_0 \Psi - \mathcal{L} \\
&= i\Psi^\dagger \partial_0 \Psi - \Psi^\dagger \gamma^0(\gamma^0\partial_0 + \gamma^0 \cdot \nabla - m) \Psi \\
&= \Psi^\dagger(-i\gamma^0 \gamma^0 \cdot \nabla + \gamma^0 m) \Psi
\end{align*} \quad (66)$$

where the terms involving the time derivative ∂_0 cancel out. Consequently, the Hamiltonian
operator of the quantum field theory is

\[\hat{H} = \int d^3x \hat{\Psi}^\dagger(x)(-i\gamma^0 \vec{\gamma} \cdot \nabla + \gamma^0 m) \hat{\Psi}(x). \] \tag{67}

Note that the derivative operator \((-i\gamma^0 \vec{\gamma} \cdot \nabla + \gamma^0 m)\) in this formula is precisely the 1-particle Dirac Hamiltonian (27). This is very similar to what we had for the quantum non-relativistic fields,

\[\hat{H} = \int d^3x \hat{\psi}^\dagger(x) \left(-\frac{1}{2M} \nabla^2 + V(x) \right) \hat{\psi}(x), \] \tag{68}

except for a different differential operator, Schrödinger instead of Dirac.

In the Heisenberg picture, the quantum Dirac field obeys the Dirac equation. To see how this works, we start with the Heisenberg equation

\[i \frac{\partial}{\partial t} \hat{\Psi}_\alpha(x,t) = [\hat{\Psi}_\alpha(x,t), \hat{H}] = \int d^3y [\hat{\Psi}_\alpha(x,t), \hat{H}(y,t)], \] \tag{69}

and then evaluate the last commutator using the anti-commutation relations (65) and the Leibniz rules (11). Indeed, let’s use the Leibniz rule

\[[A, BC] = \{A, B\} C - B\{A, C\} \] \tag{70}

for

\begin{align*}
A &= \hat{\Psi}_\alpha(x,t), \\
B &= \hat{\Psi}_\beta^\dagger(y,t), \\
C &= (-i\gamma^0 \vec{\gamma} \cdot \nabla + \gamma^0 m)_{\beta\gamma} \hat{\Psi}_\gamma(y,t),
\end{align*} \tag{71}

so that \(BC = \hat{H}(y,t)\). For the \(A, B, C\) at hand,

\[\{A, B\} = \delta_{\alpha\beta}\delta^{(3)}(x-y) \] \tag{72}

while

\[\{A, C\} = (-i\gamma^0 \vec{\gamma} \cdot \nabla_y + \gamma^0 m)_{\beta\gamma} \{\hat{\Psi}_\alpha(x,t), \hat{\Psi}_\gamma(y,t)\} = (\text{diff.op.}) \times 0 = 0. \] \tag{73}
Consequently

\[
\left[\hat{\Psi}_\alpha(x, t), \hat{\mathcal{H}}(y, t) \right] \equiv [A, BC] = \{A, B\} \times C - B \times \{A, C\}
\]

\[= \delta_{\alpha\beta}\delta^{(3)}(x - y) \times (-i\gamma^0 \vec{\gamma} \cdot \nabla + \gamma^0 m)_{\beta\gamma} \hat{\Psi}_\gamma(y, t) - 0,\]

(74)

hence

\[
\left[\hat{\Psi}_\alpha(x, t), \hat{H} \right] = \int d^3 y \delta^{(3)}(x - y) \times (-i\gamma^0 \vec{\gamma} \cdot \nabla + \gamma^0 m)_{\alpha\gamma} \hat{\Psi}_\gamma(y, t)
\]

\[= (-i\gamma^0 \vec{\gamma} \cdot \nabla + \gamma^0 m)_{\alpha\gamma} \hat{\Psi}_\gamma(x, t),\]

(75)

and therefore

\[i\partial_0 \hat{\Psi}(x, t) = (-i\gamma^0 \vec{\gamma} \cdot \nabla + \gamma^0 m)\hat{\Psi}(x, t).\]

(76)

Or if you prefer,

\[(i\gamma^\mu \partial_\mu - m)\hat{\Psi}(x) = 0.\]

(77)