Lehmann–Symanzik–Zimmermann (LSZ) Reduction Formula

Earlier in class (see my notes) I explained the two-point correlation functions and showed how their poles are related to the physical masses of particles and the strengths of bare fields. The LSZ reduction formula focuses on the \(n > 2 \) correlation functions
\[
\mathcal{F}_n(x_1, \ldots, x_n) \overset{\text{def}}{=} \langle \Omega | \hat{T} \Phi(x_1) \cdots \Phi(x_n) | \Omega \rangle
\] — where the quantum fields \(\hat{\Phi}(x) \) are in the Heisenberg picture of quantum mechanics — and relates the poles of their Fourier transforms
\[
\mathcal{F}_n(p_1, \ldots, p_n) = \int d^4 x_1 e^{ip_1 x_1} \cdots \int d^4 x_n e^{ip_n x_n} \times \mathcal{F}_n(x_1, \ldots, x_n),
\]
to the \(S \)-matrix elements. The poles happen when any of the \(n \) momenta \(p_i \) approaches the mass shell, \(p_i^2 \to M_{\text{phys}}^2 \), and the most interesting pole is the simultaneous pole when all \(n \) momenta go on-shell. Specifically, let
\[
p_1^0 \to +E(p_1) = +\sqrt{p_1 + M^2}, \ldots, \ p_k^0 \to +E(p_k)
\] for some \(k < n \), but
\[
p_{k+1}^0 \to -E(p_{k+1}), \ldots, \ p_n^0 \to -E(p_n).
\]
In this limit, Lehmann–Symanzik–Zimmermann formula (published in 1955) gives us
\[
\mathcal{F}_n(p_1, \ldots, p_n) \underset{\text{on shell}}{\longrightarrow} \prod_{i=1}^n \frac{i\sqrt{Z}}{p_i^2 - M^2 + i\epsilon} \times (-p_{k+1}, \ldots, -p_n) |\hat{S}| p_1, \ldots, p_k \rangle.
\]
The field-strength factors \(\sqrt{Z} \) in this formula stem from the \(\mathcal{F}_n \) in eq. (1) being the correlation of the bare fields. If we re-define it as the correlation function of the renormalized fields — or equivalently, use the counterterm perturbation theory to calculate the correlation function, —
then we would get

\[F_{n}^{\text{renormalized}} = Z^{-n/2} F_{n}^{\text{bare}} \] \hspace{1cm} (6)

and consequently

\[F_{n}^{\text{renormalized}}(p_1, \ldots, p_n) \xrightarrow{\text{on shell}} \prod_{i=1}^{n} \frac{p_i^2 - i \epsilon}{p_i^2 - M^2 + i \epsilon} \times \langle -p_{k+1}, \ldots, -p_n | \hat{S} | p_1, \ldots, p_k \rangle. \] \hspace{1cm} (7)

\section*{Perturbation Theory for the Correlation Functions}

Before deriving the LSZ reduction formula, let me show how the poles at \(p_i^2 \to M^2 \) arise from formal resummation of the perturbation theory. For simplicity, let’s focus on the connected correlation functions, which in perturbation theory obtain as

\[F_{n}^{\text{conn}}(p_1, \ldots, p_n) = \sum (\text{all connected diagrams with } n \text{ external vertices}). \] \hspace{1cm} (8)

Topologically, a general diagram of this kind has an amputated core, plus any number of external leg bubbles on any of the \(n \) external legs, thus
Each external leg bubble here is one-particle irreducible (1PI) — if we cut any propagator internal to the bubble, it stays connected. As to the amputated core, if we cut any propagator internal to the core, it may stay connected or break into two disconnected parts, but if it breaks then each part must remain connected to at least two external legs.

A general diagram (9) contributing to the connected n-point function may have:

- Any kind of amputated core with n external legs.
- Any number $N_i = 0, 1, 2, \ldots$ of leg bubbles in each of the n legs.
- And any such bubble may be any kind of 1PI subgraph with 2 external legs.

* Most importantly, we may chose any amputated core we like and any leg bubbles we like completely independently from each other.
Consequently, when we formally sum over all connected Feynman diagrams with \(n \) external vertices, the sum factorizes into a product of a sum over the cores and a sum over the bubbles in each leg,

\[
\mathcal{F}_{n}^{\text{conn}}(p_1, \ldots, p_n) = \sum \left(\text{connected diagrams} \right) = \sum \left(\text{amputated cores} \right) \times \prod_{i=1}^{n} \left(\text{external leg factors} \right).
\]

where each external leg factors includes the blue propagators and the leg bubbles, and should be summed over all numbers of bubbles of any kinds. In general, for \(N_i \) bubbles we have \(N_i + 1 \) blue propagators with fixed momentum \(p_i \), thus

\[
\left(\text{external leg factor} \right)_i = \sum_{N_i=0}^{\infty} \left(\frac{i}{p_i^2 - m_b^2 + i\epsilon} \right)^{N_i+1} \times \left[\sum \left(\text{single bubbles} \right) \right]^{N_i}
\]

\[
= \sum_{N_i=0}^{\infty} \left(\frac{i}{p_i^2 - m_b^2 + i\epsilon} \right)^{N_i+1} \times \left[-i\Sigma(p_i^2) \right]^{N_i}
\]

\[
= \frac{i}{p_i^2 - m_b^2 - \Sigma(p_i^2) + i\epsilon} = \mathcal{F}_2(p_i^2),
\]

exactly as in the two-point correlation function. Therefore,

\[
\mathcal{F}_{n}^{\text{conn}}(p_1, \ldots, p_n) = \prod_{i=1}^{n} \mathcal{F}_2(p_i^2) \times \sum \left(\text{amputated cores} \right).
\]

This formula explains where the poles in the correlation functions come from: When any of the momenta \(p_i \) goes on-shell, \(p_i^2 \to M_{\text{phys}}^2 \), the corresponding \(\mathcal{F}_2(p_i^2) \) has a pole,

\[
\mathcal{F}_2(p^2) = \frac{iZ}{p_i^2 - M^2 + i\epsilon} + \text{finite},
\]

which translates into the pole of the whole product (12). When all of the \(n \) momenta go on
shell at the same time, all \(n \) of the \(\mathcal{F}_2(p_i^2) \) factors develop poles, thus

\[
\mathcal{F}_n^{\text{conn}}(p_1, \ldots, p_n) \rightarrow \prod_{i=1}^n \frac{iZ}{p_i^2 - M^2 + i\epsilon} \times \sum \left(\text{amputated cores} \right).
\] (14)

Note the combined residue of this \(n \)-fold pole,

\[
\text{Residue} [\mathcal{F}_n^{\text{conn}}(p_1, \ldots, p_n)]_{\text{all } p_i^2 \rightarrow M^2} = (iZ)^n \times \sum \left(\text{amputated cores} \right).
\] (15)

Thus far, we have explained the poles of the Lehmann–Symanzik–Zimmermann formula (5). In a moment, we should compare the residues. But first let’s cluster-expand the LHS of the LSZ formula into connected correlation functions while the S-matrix element on the RHS likewise expands into connected and disconnected pieces. For example, for \(n = 4 \) we have

\[
\mathcal{F}_4(p_1, p_2, p_3, p_4) = \mathcal{F}_4^{\text{conn}}(p_1, p_2, p_3, p_4)
+ \mathcal{F}_2(p_1, p_2) \times \mathcal{F}_2(p_3, p_4) + \mathcal{F}_2(p_1, p_3) \times \mathcal{F}_2(p_2, p_4)
+ \mathcal{F}_2(p_1, p_4) \times \mathcal{F}_2(p_2, p_3),
\] (16)

and at the same time

\[
\langle -p_3, -p_4 | \hat{S} | p_1, p_2 \rangle = (2\pi)^4 \delta^{(4)}(p_1 + p_2 + p_3 + p_4) \times \langle -p_3, -p_4 | i\hat{M} | p_3, p_4 \rangle
+ \langle -p_2 | \hat{S} | p_1 \rangle \times \langle -p_4 | \hat{S} | p_3 \rangle + \langle -p_3 | \hat{S} | p_1 \rangle \times \langle -p_4 | \hat{S} | p_2 \rangle
+ \langle -p_4 | \hat{S} | p_1 \rangle \times \langle -p_3 | \hat{S} | p_2 \rangle.
\] (17)

In terms of the LSZ formula for \(n = 4 \), we get 4 terms — 1 connected and 3 disconnected — on each side of the equation. The corresponding disconnected terms on the left-hand and the right hand sides match each other by the LSZ formula for \(n = 2 \), so the connected terms should also match each other,

\[
\mathcal{F}_4^{\text{conn}}(p_1, p_2, p_3, p_4) \quad \longrightarrow \quad \prod_{i=1}^4 \left(\frac{i\sqrt{Z}}{p_i^2 - M^2 + i\epsilon} \right) \times (2\pi)^4 \delta^{(4)}(p_{\text{net}}) \times \langle -p_3, -p_4 | i\hat{M} | p_1, p_2 \rangle,
\] (18)
Likewise, for \(n > 4 \)

\[
\mathcal{F}_n^{\text{conn}}(p_1, \ldots, p_n) \xrightarrow{\text{on shell}} \prod_{i=1}^{n} \left(\frac{i\sqrt{Z}}{p_i^2 - M^2 + i\epsilon} \right) \times (2\pi)^4 \delta^{(4)}(p_{\text{net}}) \\
\times \langle -p_{k+1}, \ldots, -p_n | i\hat{M} | p_1, \ldots, p_k \rangle
\]

(19)

for \(p_1^0, \ldots, p_k^0 > 0 \) while \(p_{k+1}^0, \ldots, p_n^0 < 0 \).

Now let’s compare the residue of the combined pole here,

\[
\text{Residue } [\mathcal{F}_n^{\text{conn}}(p_1, \ldots, p_n)]_{\text{on shell}} = \left(i\sqrt{Z} \right)^n \times (2\pi)^4 \delta^{(4)}(p_{\text{net}}) \\
\times \langle -p_{k+1}, \ldots, -p_n | i\hat{M} | p_1, \ldots, p_k \rangle,
\]

(20)

to the residue (15) of the same connected correlation function which obtains from the Feynman rules. Matching the two expressions, we see that the LSZ formula implies

\[
(2\pi)^4 \delta^{(4)}(p_{\text{net}}) \times \langle -p_{k+1}, \ldots, -p_n | i\hat{M} | p_1, \ldots, p_k \rangle = Z^{n/2} \times \sum \left(\text{amputated cores} \right).
\]

(21)

And this is why we calculate the scattering amplitudes using only the amputated Feynman diagrams!

The factor \(Z^{n/2} \) in eq. (21) follows from using the correlation functions for bare fields and hence the bare perturbation theory for the amputated diagrams. In the counterterm perturbation theory, this factor goes away and we are left with

\[
(2\pi)^4 \delta^{(4)}(p_{\text{net}}) \times i\mathcal{M}\text{(on shell } p_1, \ldots, p_n) = \sum \left(\text{amputated cores with } n \text{ external lines} \right).
\]

(22)
DERIVING THE LSZ REDUCTION FORMULA

Now that we know what is the LSZ reduction formula good for, let’s prove it. Let’s start by focusing on a single momentum, say p_1, and look for the quantum origin of the poles when that momentum goes on shell, $p_1^0 \to \pm E(p_1)$. To simplify our notations, we keep the (x_2, \ldots, x_n) coordinates of the n-point correlation function in the coordinate basis, only the x_1 gets Fourier transformed to the momentum basis, thus

$$F_n(p_1; x_2, \ldots, x_n) = \int d^4 x_1 e^{-ip_1 \cdot x_1} \times F_n(x_1, x_2, \ldots, x_n).$$

Let’s split the time integral here over $t_1 = x_1^0$ into 3 integration ranges: Range (i) from $-\infty$ to some very early but finite time T_1; range (II) from T_1 to some very late but finite time T_2; and range (III) from T_2 to $+\infty$. Thus,

$$F_n(p_1; x_2, \ldots, x_n) = \sum_{i=1}^3 \int_{\text{range}#i} dt_1 e^{-ix_1^0p_1^0} \times \int d^3 x_1 e^{-ix_1 \cdot p_1} \times F_n(x_1, x_2, \ldots, x_n).$$

(24)

Note that in the coordinate space, the $F_n(x_1, x_2, \ldots, x_n)$ is an analytic function of the x_1^μ. Consequently, integrating the $F_n \times$ phase over a finite range#2 of time cannot possibly produce a pole — all such integrals are analytic and finite. Instead, the poles at $p_1^0 = \pm E(p_1)$ must come from integrating over the semi-infinite time ranges #1 and #3. So let’s take a closer look at these time ranges.

For the first time range $x_1^0 < T_1$, the x_1 point is earlier than all the other $n-1$ points x_2, \ldots, x_n, hence

$$T(\hat{\Phi}(x_1) \cdots \Phi(x_n)) = T(\hat{\Phi}(x_2) \cdots \Phi(x_n)) \times \hat{\Phi}(x_1)$$

(25)

and therefore

$$F_n(x_1, x_2, \ldots, x_n) = \langle \Omega | T(\hat{\Phi}(x_2) \cdots \Phi(x_n)) \times \hat{\Phi}(x_1) | \Omega \rangle$$

$$= \sum_{\Psi} \langle \Omega | T(\hat{\Phi}(x_2) \cdots \Phi(x_n)) | \Psi \rangle \times \langle \Psi | \hat{\Phi}(x_1) | \Omega \rangle,$$

(26)

where the sum is over all quantum states Ψ. Similar to what we did in an earlier class for the two-point functions (see my notes, pages 9–11), we restrict the sum to the quantum states
which can be created by the field $\hat{\Phi}$ from the vacuum $|\Omega\rangle$, and then we label such states as $|\psi, q\rangle$ where q^μ is the net momentum of the state while ψ denotes the rest of its quantum numbers, discrete or continuous. Consequently,

$$\sum_{|\Psi\rangle} = \sum_{\psi} \int \frac{d^3q}{(2\pi)^3} \frac{1}{2E(q, \psi)}$$

for

$$q^0 = +E(q, \psi) = +\sqrt{q^2 + M^2(\psi)}.$$

Also, the x_1 and the q dependence of the matrix element $\langle \psi, q | \hat{\Phi}(x_1) | \Omega \rangle$ obtain as simply

$$\langle \psi, q | \hat{\Phi}(x_1) | \Omega \rangle = e^{+iq_1 x_1} \times \langle \psi | \hat{\Phi} | \Omega \rangle.$$

Plugging these formulae into eq. (26) and hence into the range#1 contribution to the $F_n(p_1; x_2, \ldots, x_n)$, we arrive at

$$\left(\begin{array}{c} \text{range#1 contribution} \\ \text{contribution} \end{array} \right) = \int_{-\infty}^{T_1} dt_1 \int d^3x_1 \ e^{-ix_1 p_1} \sum_{\psi} \int \frac{d^3q}{(2\pi)^3} \frac{1}{2E(q, \psi)} \langle \Omega | T(\hat{\Phi}(x_2) \cdots \hat{\Phi}(x_n)) | \psi, q \rangle$$

$$\times \langle \psi | \hat{\Phi} | \Omega \rangle \times e^{+iq_1 x_1}.$$

(30)

Now let’s integrate over the x_1 before integrating over q and summing over ψ. The only x_1-dependent factors here are the $e^{+ip_1 x_1} \times e^{-iq x_1}$, so the space integral

$$\int d^3x_1 \ e^{+ip_1 x_1} \times e^{-iq x_1} = (2\pi)^3 \delta(3)(q - p_1)$$

sets $q = p_1$, and hence $q^0 = +E(q, \psi) = +E(p, \psi)$. Consequently, the time integral over the range#1 becomes

$$\int_{-\infty}^{T_1} dt_1 \ e^{-it_1 p_1^0} \times e^{+it_1 E(p)} = \int_{-\infty}^{T_1} dt_1 \ e^{t_1(-ip_1^0 + iE(p) + \epsilon)}$$

$$= \frac{e^{t_1(-ip_1^0 + iE(p) + \epsilon)}}{-ip_1^0 + E(p) + \epsilon} = \frac{ie^{-iT_1(p_1^0 - E(p))}}{p_1^0 - E(p) + i\epsilon}.$$

(32)
Consequently, the big integral (30) reduces to

\[
\left(\text{range\#1 contribution} \right) = \sum_{\psi} \frac{1}{2E(p_1, \psi)} \times \frac{ie^{-iT_1(p_1^0 - E(p))}}{p_1^0 - E(p) + i\epsilon} \times \langle \Omega | T(\hat{\Phi}(x_2) \cdots \Phi(x_n)) | \psi, p \rangle \times \langle \psi | \hat{\Phi} | \Omega \rangle
\]

(33)

Note that for discrete state \(\psi\) there is a pole at \(p_1^0 = +E(p, \psi) = +\sqrt{p^2 + M(\psi)^2}\). In particular, the one-particle state of physical mass \(M\) contributes the pole

\[
\frac{ie^{-iT_1(p_1^0 - E(p))}}{2E(p)(p_1^0 - E(p) + i\epsilon)} \times \langle \Omega | T(\hat{\Phi}(x_2) \cdots \Phi(x_n)) | 1 : p \rangle \times \sqrt{Z}
\]

(34)

where the \(\sqrt{Z}\) factor comes from \(|1\rangle \hat{\Phi} | \Omega\rangle = \sqrt{Z}\). Moreover, near the pole

\[
\frac{ie^{-iT_1(p_1^0 - E(p))}}{2E(p)(p_1^0 - E(p) + i\epsilon)} = \frac{i}{(p_1^0)^2 - E^2(p) + i\epsilon} + \text{finite} = \frac{i}{p_1^2 - M_{\text{phys}}^2 + i\epsilon} + \text{finite.} \quad (35)
\]

so we may rewrite the pole in usual the relativistic form.

So here is the bottom line: for \(p_1\) going to the positive-energy mass shell, the correlation function \(F_n(p_1; x_2, \ldots, x_n)\) has a pole \(i/(p_1^2 - M^2 + i\epsilon)\) with residue

\[
\text{residue} = \sqrt{Z} \times \langle \Omega | T(\hat{\Phi}(x_2) \cdots \Phi(x_n)) | 1 : p_1 \rangle.
\]

(36)

This pole comes from the first range of the time integration, \(-\infty < x_1^0 < T_1\).

The third range of time integration, \(T_2 < x_1^0 < +\infty\), can be handled in a similar manner. To save time, let me skip the gory details of the calculation and simply give you the bottom line. This time, the pole is for \(p_1\) going to the negative-energy mass shell, \(p_1^0 \rightarrow -E(p, M)\), and its residue is

\[
\text{residue} = \sqrt{Z} \times \langle 1 : (-p_1) | T(\hat{\Phi}(x_2) \cdots \Phi(x_n)) | \Omega \rangle.
\]

(37)
Thus far, we have focused on the pole for a single momentum \(p_1 \) going on shell. Now consider the

\[
F_n(p_1, p_2; x_3, \ldots x_n) = \int d^4x_1 e^{-ip_1x_1} \int d^4x_2 e^{-ip_2x_2} \times F_n(x_1, x_2, x_3, \ldots, x_n)
\]

and take both momenta \(p_1 \) and \(p_2 \) on-shell at the same time, say \(p_1^0 \to +E(p_1, M) \) and \(p_2^0 \to +E(p_2, M) \). Similar to what we had for a single momentum, this time we get a combined pole

\[
\frac{i}{p_1^2 - M^2 + i\epsilon} \times \frac{i}{p_2^2 - M^2 + i\epsilon}
\]

which emerges from the time integrals \(\int dt \) and \(\int dt \) over the asymptotic past range, \(t_1, t_2 \to -\infty \). For two fields \(\hat{\Phi}(x_1) \) and \(\hat{\Phi}(x_2) \) at the asymptotic past points, we have

\[
\langle \Omega | T \hat{\Phi}(x_1) \cdots \hat{\Phi}(x_n) | \Omega \rangle = \sum_\Psi \langle \Omega | T \hat{\Phi}(x_3) \cdots \hat{\Phi}(x_n) | \Psi \rangle \times \langle \Psi | T \hat{\Phi}(x_1) \hat{\Phi}(x_2) | \Omega \rangle,
\]

and the pole (39) comes from \(|\Psi\rangle = |\text{in}(p_1, p_2)\rangle \) — the asymptotic incoming state of two particles. Strictly speaking, the two particles here do not have exactly definite momenta \(p_1 \) and \(p_2 \) but rather wave-packet states of small \(\delta p \), so in the coordinate picture these two wave packets have finite sizes. Consequently, in the asymptotic past when the two particles were very far from each other, their respective wave packets do not overlap, and the particles do not interact until they approach each other at later times. In this regime

\[
\langle \text{in}(q_1, q_2) | T \hat{\Phi}(x_1) \hat{\Phi}(x_2) | \Omega \rangle = \langle \text{in}(q_1) | \hat{\Phi}(x_1) | \Omega \rangle \times \langle \text{in}(q_2) | \hat{\Phi}(x_2) | \Omega \rangle + (q_1 \leftrightarrow q_2)
\]

\[
= Z \times \text{wavepacket}(x_1) \times \text{wavepacket}(x_1) + (p_1 \leftrightarrow p_2)
\]

\[
\approx Z \times e^{iq_1x_1} \times e^{iq_2x_2} + (p_1 \leftrightarrow p_2)
\]

and consequently

\[
F_n(p_1, p_2; x_3, \ldots, x_n) \xrightarrow{\text{\(p_1, p_2 \to \text{mass shell} \)}} \frac{i\sqrt{Z}}{p_1^2 - M^2 + i\epsilon} \times \frac{i\sqrt{Z}}{p_2^2 - M^2 + i\epsilon}
\]

\[
\times \langle \Omega | T \hat{\Phi}(x_3) \cdots \hat{\Phi}(x_n) | \text{in}(p_1, p_2) \rangle.
\]

Finally, let’s Fourier transform the remaining coordinates \(x_3, \ldots, x_n \) to momenta \(p_3, \ldots, p_n \), and the take all these momenta to the negative-energy mass shell, each \(p_i \to -E(p_i, M) \). This
tome, integrating each time variable t_3, \ldots, t_n over the asymptotic future range, hence

$$
\langle \Omega | \mathbf{T} \Phi(x_3) \cdots \Phi(x_n) | \text{in}(p_1, p_2) \rangle = \sum_{\Psi} \langle \Omega | \mathbf{T} \Phi(x_3) \cdots \Phi(x_n) | \Psi \rangle \times \langle \Psi | \text{in}(p_1, p_2) \rangle \quad (43)
$$

where the pole

$$
\frac{i}{p_3^2 - M^2 + i\epsilon} \times \cdots \times \frac{i}{p_n^2 - M^2 + i\epsilon} \quad (44)
$$

comes from $\langle \Psi | = \langle \text{out}(-p_3, \ldots, -p_n) |$ — the asymptotic outgoing state of $n - 2$ particles. Treating this state just as we treated the incoming 2-particle state, we go through a bit of algebra and eventually arrive at

$$
\mathcal{F}_n(p_1, \ldots, p_n) \xrightarrow{\text{all } p_i \rightarrow \text{mass shell}} = \prod_{i=1}^{n} \left(\frac{i \sqrt{Z}}{p_i^2 - M^2 + i\epsilon} \right) \times \langle \text{out}(-p_3, \ldots, -p_n) | \text{in}(p_1, p_2) \rangle. \quad (45)
$$

Throughout these notes we were working in the Heisenberg picture of the quantum mechanics, so the asymptotic incoming and outgoing states in eq. (45) are the Heisenberg-picture states. Translating them into the interaction picture turns the Dirac bracket of the $|\text{in}\rangle$ and $|\text{out}\rangle$ states into the S-matrix element,

$$
\langle \text{out}(-p_3, \ldots, -p_n) | \text{in}(p_1, p_2) \rangle_H = \langle \text{out}(-p_3, \ldots, -p_n) | \hat{S} | \text{in}(p_1, p_2) \rangle_I. \quad (46)
$$

Consequently, eq. (45) becomes the Lehmann–Symanzik–Zimmermann formula

$$
\mathcal{F}_n(p_1, \ldots, p_n) \xrightarrow{\text{all } p_i \rightarrow \text{mass shell}} = \prod_{i=1}^{n} \left(\frac{i \sqrt{Z}}{p_i^2 - M^2 + i\epsilon} \right) \times \langle \text{out}(-p_3, \ldots, -p_n) | \hat{S} | \text{in}(p_1, p_2) \rangle. \quad (5)
$$

Quod erat demonstrandum.