1. Verify the integrals used by the Feynman’s parameter trick and its generalizations:

\[
\frac{1}{AB} = \int_0^1 \frac{d\xi}{[\xi A + (1 - \xi)B]^2}, \quad (F.a)
\]

\[
\frac{1}{A^n B} = \int_0^1 \frac{n\xi^{n-1}d\xi}{[\xi A + (1 - \xi)B]^{n+1}}, \quad (F.b)
\]

\[
\frac{1}{A^n B^m} = \frac{(n + m - 1)!}{(n-1)!(m-1)!} \times \int_0^1 \frac{\xi^{n-1}(1 - \xi)^{m-1}d\xi}{[\xi A + (1 - \xi)B]^{n+m}}, \quad (F.c)
\]

\[
\frac{1}{ABC} = \int_0^1 \frac{d\xi}{\xi A + \eta B + (1 - \xi - \eta)C}^{\frac{3}{2}} \int_0^1 \frac{2d\eta}{[\xi A + \eta B + (1 - \xi - \eta)C]^3}, \quad (F.d)
\]

\[
\frac{1}{A_1 A_2 \cdots A_k} = \int_{\xi_1,\ldots,\xi_k \geq 0} d^k \xi \delta(\xi_1 + \cdots + \xi_k - 1) \times \frac{(k-1)!}{[\xi_1 A_1 + \cdots + \xi_k A_k]^k}, \quad (F.e)
\]

\[
\frac{1}{A_1^{n_1} A_2^{n_2} \cdots A_k^{n_k}} = \frac{(n_1 + \cdots + n_k - 1)!}{(n_1-1)! \cdots (n_k-1)!} \times \int_{\xi_1,\ldots,\xi_k \geq 0} d^k \xi \delta(\xi_1 + \cdots + \xi_k - 1) \times \frac{\xi_1^{n_1-1} \cdots \xi_k^{n_k-1}}{[\xi_1 A_1 + \cdots + \xi_k A_k]^{n_1+\cdots+n_k}}, \quad (F.f)
\]

2. In class, we have evaluated the one-loop diagram

\[
(1)
\]

using the hard-edge cutoff as an ultraviolet regulator. Your task is to evaluate the same diagram using two other UV regulators: (1) Pauli–Villars, and (2) higher derivatives.
Show that all 3 regulators yield similar amplitudes of the form

\[\mathcal{M}(\text{diagram (1)}) = \frac{\lambda_{\text{bare}}^2}{32\pi^2} \times \left(\log \frac{\Lambda^2}{m^2} + C - J(t/m^2) + \text{negligible} \right) \]

(2)

where

\[J(t/m^2) = \int_0^1 d\xi \log \frac{m^2 - t \times \xi(1 - \xi)}{m^2}, \]

(3)

‘negligible’ stands for terms that vanish as negative powers of the cutoff scale \(\Lambda \) for \(\Lambda \to \infty \), and \(C \) is an \(O(1) \) numeric constant that depends on the particular UV regulator:

\[C_{\text{hard edge}} \neq C_{\text{Paili Villars}} \neq C_{\text{higher derivative}}. \]

(4)

Fortunately, this regulator dependence can be canceled by adjusting the cutoff scale parameter \(\Lambda \) for each regulator: Let

\[\Lambda_{\text{HE}}^2 \times e^{C_{\text{HE}}} = \Lambda_{\text{PV}}^2 \times e^{C_{\text{PV}}} = \Lambda_{\text{HD}}^2 \times e^{C_{\text{HD}}}, \]

(5)

then all 3 regulators would yield exactly the same loop amplitude (2).

Note: the dimensional regularization also yields exactly the same amplitude (2), provided we identify the UV cutoff scale as

\[\Lambda_{\text{DR}}^2 = \mu^2 \times \exp \left(\frac{1}{\epsilon} = \frac{2}{4 - D} \right) \]

(6)

and then set

\[\Lambda_{\text{DR}}^2 \times e^{C_{\text{DR}}} = \Lambda_{\text{HE}}^2 \times e^{C_{\text{HE}}} = \Lambda_{\text{PV}}^2 \times e^{C_{\text{PV}}} = \Lambda_{\text{HE}}^2 \times e^{C_{\text{HD}}} \]

(7)

for a suitable \(O(1) \) numeric constant \(C_{\text{DR}} \).
Hint: for the higher-derivative regulator, approximate the modified propagator as

$$\frac{i}{q^2 - m^2 - (q^4/\Lambda^2) + i\epsilon} \approx \frac{i}{q^2 - m^2 + i\epsilon} \times \frac{-\Lambda^2}{q^2 - \Lambda^2 + i\epsilon}$$

(8)

where the second factor differs from 1 only for very large momenta. Consequently, for the two propagators in the loop we may further approximate

$$\frac{-\Lambda^2}{q_1^2 - \Lambda^2 + i\epsilon} \approx \frac{-\Lambda^2}{q_2^2 - \Lambda^2 + i\epsilon} \approx \frac{-\Lambda^2}{(q_1 - \xi q_{net})^2 - \Lambda^2 + i\epsilon}$$

(9)