Problem 1(a):
Let’s start with a simpler problem: two concentric metal spheres, and the space between the spheres is either completely empty or completely filled with a uniform dielectric. By spherical symmetry of this setup, the electric field between the spheres must point in the radial direction while its magnitude depends only on the radius; by Gauss Law,

\[\mathbf{E}(x) = \frac{A}{r^2} \mathbf{n} \]

(S.1)

for some constant \(A \). The value of this constant follows from the voltage between the plates:

\[V = \Phi(a) - \Phi(b) = A \left(\frac{1}{a} - \frac{1}{b} \right) \implies A = \frac{V_{ab}}{b-a}. \]

(S.2)

For the problem at hand, the space between the spheres is half-filled with a dielectric while the other half is vacuum. Fortunately, each material occupies a hemisphere, so the boundary between them lies in the equatorial plane. Consequently, for this geometry the electric field is exactly as in eq. (S.1), while the displacement field \(\mathbf{D} \) is

\[\mathbf{D}_{\text{in vacuum}} = \varepsilon_0 \mathbf{E} = \frac{\varepsilon_0 A}{r^2} \mathbf{n}, \]

\[\mathbf{D}_{\text{in dielectric}} = \varepsilon \varepsilon_0 \mathbf{E} = \frac{\varepsilon \varepsilon_0 A}{r^2} \mathbf{n}. \]

(S.3)

Graphically,

Indeed, the field (S.1) and (S.3) obey the boundary conditions at the dielectric-boundary
interface

\[\mathbf{E}^\parallel_{\text{vac}} = \mathbf{E}^\parallel_{\text{diel}}, \quad \mathbf{D}^\perp_{\text{vac}} = \mathbf{D}_{\text{diel}} \] \hspace{1cm} (S.5)

since (1) the \(\mathbf{E} \) field is completely continuous across the boundary, while (2) the \(\mathbf{D} \) field at both sides of the boundary points in the radial direction which happens to be parallel to the boundary, thus

\[\mathbf{D}^\perp_{\text{vac}} = 0 = \mathbf{D}_{\text{diel}}. \] \hspace{1cm} (S.6)

The remaining conditions on the \(\mathbf{E} \) and \(\mathbf{D} \) fields: the equations of state in the vacuum and in the dielectric,

\[\nabla \times \mathbf{E} = 0 \quad \text{and} \quad \nabla \cdot \mathbf{D} = \rho = 0 \] \hspace{1cm} (S.7)

in both halves of the space between the spheres, and the boundary conditions on the metal spheres themselves —

for \(x \in \text{inner sphere} \), \(\Phi(x) = \text{const} \),

for \(x \in \text{outer sphere} \), \(\Phi(x) = \text{const} \),

\[\Phi(\text{inner sphere}) - \Phi(\text{outer sphere}) = V, \] \hspace{1cm} (S.8)

— are also obviously satisfied.

Thus, the electric tension and displacement fields for this problem are indeed as in eqs. (S.1) and (S.3).

Problem 1(b):
Inside the metal of each sphere \(\mathbf{E} = 0 \) and hence \(\mathbf{D} = 0 \). This makes the \(\mathbf{D} \) field discontinuous at the outer surface of the inner sphere and at the inner surface of the outer sphere, and the physical reason for such a discontinuity is the surface density \(\sigma \) of macroscopic charges. By the Gauss Law,

\[\sigma = \mathbf{D}^\perp(\text{just outside the metal}) = \mathbf{D} \cdot \mathbf{n}^\perp \] \hspace{1cm} (S.9)

where \(\mathbf{n}^\perp \) is the unit vector normal to the metal's surface and point out from the metal. For the outer surface of the inner sphere this makes \(\mathbf{n}^\perp = +\mathbf{n}_r \) but for the inner surface of the
outer sphere $\mathbf{n}^\perp = -\mathbf{n}_r$. Consequently,

\begin{align*}
\sigma(\text{inner sphere, vacuum side}) &= +\frac{\epsilon_0 A}{a^2}, \\
\sigma(\text{inner sphere, dielectric side}) &= +\frac{\epsilon \epsilon_0 A}{a^2}, \\
\sigma(\text{outer sphere, vacuum side}) &= -\frac{\epsilon_0 A}{b^2}, \\
\sigma(\text{outer sphere, dielectric side}) &= -\frac{\epsilon \epsilon_0 A}{b^2},
\end{align*}
(S.10, S.11, S.12, S.13)

where A is as in eq. (S.2).

Given these surface charge densities, the net charge on the inner sphere is

\begin{align*}
Q_{\text{inner}} &= +\frac{\epsilon_0 A}{a^2} \times 2\pi a^2 + \frac{\epsilon \epsilon_0 A}{a^2} \times 2\pi a^2 = 2\pi(\epsilon + 1)\epsilon_0 A,
\end{align*}
(S.14)

while the net charge on the outer sphere is

\begin{align*}
Q_{\text{outer}} &= -\frac{\epsilon_0 A}{b^2} \times 2\pi b^2 - \frac{\epsilon \epsilon_0 A}{b^2} \times 2\pi b^2 = -2\pi(\epsilon + 1)\epsilon_0 A = -Q_{\text{inner}}.
\end{align*}
(S.15)

Treating these two metal spheres as plates of a capacitor with charges $\pm Q$, the capacitance of this capacitor is

\begin{align*}
C &= \frac{Q}{V} = 2\pi(\epsilon + 1)\epsilon_0 \times \frac{A}{V} = 2\pi(\epsilon + 1)\epsilon_0 \times \frac{ab}{b-a}.
\end{align*}
(S.16)

Problem 3(a):
Let’s span the current-carrying wire loop \mathcal{L} with same surface \mathcal{S}. To find the solid angle occupied by the image of \mathcal{S} as viewed from point x, we project \mathcal{S} onto a unit sphere centered on x, and then measure the area of the image. For an infinitesimal piece of \mathcal{S} of vector area da, we first project this piece onto a line of sight from x and then further project it onto the unit sphere:
On this picture

\[\Delta A_{2n} = \Delta A_2 \times \cos \theta, \quad \Delta \Omega = \frac{\Delta A_1}{r_1^2} = \frac{\Delta A_2}{r_2^2}, \quad \text{(S.17)} \]

which in our notations corresponds to

\[d\Omega = \frac{n \cdot d^2\text{area}}{R^2} \quad \text{(S.18)} \]

where \(R \) is the distance from the observation point \(x \) and \(n \) is the unit vector along the line of sight. For the infinitesimal piece of \(S \) located at \(y \),

\[R = |y - x|, \quad n = \frac{y - x}{|y - x|}, \quad \text{(S.19)} \]

hence

\[d\Omega = \frac{(y - x) \cdot d^2\text{area}(y)}{|y - x|^3}. \quad \text{(S.20)} \]

Integrating this formula over the whole surface \(S \) spanning the loop \(\mathcal{L} \), we arrive at

\[\Omega(x) = \int \int_S \frac{(y - x) \cdot d^2\text{area}(y)}{|y - x|^3}. \quad \text{(2)} \]

Quod erat demonstrandum.
Problem 3(b):
The sign convention for the $\Omega(x)$ follow from eq. (2) and the standard convention for the direction of the area vector. For simplicity, consider a flat loop \mathcal{L} spanned by a flat surface \mathcal{S}. The area vector \mathbf{a} of this surface is perpendicular to the surface itself, but which perpendicular? To make the Stokes’ theorem work without an extra sign, the direction of \mathbf{a} should follow from the sense of the loop \mathcal{L} by the right hand rule: if you see the loop (or rather the current in the loop) running clockwise, then the area vector \mathbf{a} points away from you, $i.e.$, makes angle $< 90^\circ$ with the line of sight; but if you see the loop \mathcal{L} running counterclockwise, then \mathbf{a} points towards you, $i.e.$, makes angle $> 90^\circ$ with the line of sight. The same rule applies to the area vector of any infinitesimal piece of \mathcal{S}, so the integrand in eq. (2) is positive for a clockwise loop \mathcal{L} and negative for a counterclockwise \mathcal{L}.

For a non-flat surface, the rule for for the direction of the $d\mathbf{a}$ vector is topological. The surface \mathcal{S} spanning the loop \mathcal{L} must be orientable, $i.e.$, have two well defined sides; Möbius strips and similar non-orientable surfaces are not allowed. Depending on the sense of the loop \mathcal{L}, we call one side ‘inner’ and the other side ‘outer’ according at the right hand rule, and then the direction of $d\mathbf{a}$ is the \perp to the surface (at the point in question) and pointing from the ‘inside’ to the ‘outside’. Consequently, if the loop \mathcal{L} and the surface \mathcal{S} are not too twisted and lie largely to one side of \mathbf{x}, then the sign of $\Omega(x)$ obtaining from eq. (2) follows from the sense of the loop as viewed from \mathbf{x} similarly to the flat-surface case.

The problem with eq. (2) is that different surfaces spanning the same loop \mathcal{L} may yield different values of $\Omega(x)$, although all the different values for the same point \mathbf{x} differ by 4π, or at worse by $4\pi \times$ an integer. To see how this works, let two surfaces \mathcal{S}_1 and \mathcal{S}_2 span \mathcal{L} and consider the space \mathcal{V} trapped between these surfaces. Together, \mathcal{S}_1 and \mathcal{S}_2 form the complete surface of the volume \mathcal{V}, but one of the the two surfaces — say, \mathcal{S}_2 — has a wrong orientation — its infinitesimal area vectors point inside \mathcal{V} rather than outside. So properly speaking, the complete surface of \mathcal{V} is $\mathcal{S}_1 - \mathcal{S}_2$. By Gauss theorem, this means that for any vector field $\mathbf{f}(y)$

$$\iiint_{\mathcal{V}} \nabla \cdot \mathbf{f} d^3y = \iint_{\mathcal{S}_1} \mathbf{f} \cdot d^2\mathbf{a} - \iint_{\mathcal{S}_2} \mathbf{f} \cdot d^2\mathbf{a}. \quad (S.21)$$
Now let
\[f(y) = \frac{(y - x)}{|y - x|^3} \] (S.22)
for any fixed point \(x \). Then calculating \(\Omega(x) \) using the surfaces \(S_1 \) and \(S_2 \) and taking the difference, we obtain
\[
\Omega_1(x) - \Omega_2(x) = \iiint_{S_1} \frac{(y - x) \cdot d^2a(y)}{|y - x|^3} - \iiint_{S_2} \frac{(y - x) \cdot d^2a(y)}{|y - x|^3} = \iiint_V \nabla_y \left(\frac{(y - x)}{|y - x|^3} \right) \, d^3y.
\] (S.23)

But
\[
\nabla_y \cdot \left(\frac{(y - x)}{|y - x|^3} \right) = 4\pi \delta^{(3)}(x - y),
\] (S.24)
hence
\[
\Omega_1(x) - \Omega_2(x) = \begin{cases}
4\pi & \text{if } x \text{ lies inside } V, i.e. \text{ between } S_1 \text{ and } S_2, \\
0 & \text{otherwise.}
\end{cases}
\] (S.25)

In other words, if we take two surfaces spanning the same loop \(L \) but on different sides from point \(x \), then the corresponding angles \(\Omega_1(x) \) and \(\Omega_2(x) \) differ by \(4\pi \).

A qualitative way to see this multivaluedness is to project both surfaces \(S_1 \) and \(S_2 \) and the loop \(L \) onto the the unit sphere centered at \(x \). The image of the loop \(L \) divides the sphere into two parts, and if the surfaces \(S_1 \) and \(S_2 \) lie on different sides of \(x \), then their images are precisely the two parts of the sphere divided by the image of \(L \). Together, these two images complete the sphere, so their solid angles must add up to \(4\pi \). But one of the two images has a wrong orientation, so the solid angle it occupies should be taken with a minus sign, hence
\[
\text{either } \Omega_1(x) - \Omega_2(x) = 4\pi \text{ or } \Omega_2(x) - \Omega_1(x) = 4\pi.
\] (S.26)

Finally, when the wire loop \(L \) is a coil of many turns, a surface spanning it must span every turn, which calls for some kind of a helicoid. Projecting such a helicoid onto a sphere creates many overlapping patches, and their solid angles must be added up to produce the correct \(\Omega(x) \). Consequently, for an \(x \) close to a coil of many turns we may get \(\Omega(x) \gg 4\pi \).
Also, when x is in the middle of the coil, then different helicoid-like surfaces spanning the same coil may have several turns on different side of x. Consequently, the values of $\Omega(x)$ for these two surfaces may differ not just by 4π but by $4\pi \times $ integer, \textit{i.e.},

$$\Omega_1(x) - \Omega_2(x) = 0 \text{ or } \pm 4\pi \text{ or } \pm 8\pi \text{ or } \pm 12\pi \text{ or } \cdots.$$ (S.27)

However, since the differences between the values of $\Omega(x)$ for the same point x are always integer multiples of 4π, they cannot gradually change from x to $x + \delta x$. Therefore, \textit{despite the multivaluedness of the $\Omega(x)$, the gradient $\nabla\Omega(x)$ is single-valued.}

Problem 3(c):
First, let’s derive eq. (3). Take any vector field $f(y)$ and any constant vector c. By the double vector product formula,

$$\nabla \times (f \times c) = (c \cdot \nabla)f - (\nabla \cdot f)c.$$ (S.28)

In particular, let

$$f(y) = \frac{(y-x)}{|y-x|^3} = \nabla_y \left(-\frac{1}{|y-x|} \right)$$ (S.29)

for a fixed x. For this ‘field’, $\nabla_y \cdot f = 0$ for $y \neq x$, so eq. (S.28) simplifies to

$$\nabla_y \times (f \times c) = (c \cdot \nabla_y)f$$ (S.30)

and hence

$$\nabla_y \times \left(\frac{(y-x)}{|y-x|^3} \times c \right) = (c \cdot \nabla_y) \frac{(y-x)}{|y-x|^3}.$$ (3)

Now let’s use this formula to calculate the gradient of $\Omega(x)$ as calculated in eq. (2). Let
c be come constant vector, then

\[\mathbf{c} \cdot \nabla \Omega(\mathbf{x}) = (\mathbf{c} \cdot \nabla_x) \iint_S \frac{(\mathbf{y} - \mathbf{x})}{|\mathbf{y} - \mathbf{x}|^3} \cdot d^2 \mathbf{a}(\mathbf{y}) = \iint_S (\mathbf{c} \cdot \nabla_x) \left(\frac{(\mathbf{y} - \mathbf{x})}{|\mathbf{y} - \mathbf{x}|^3} \right) \cdot d^2 \mathbf{a}(\mathbf{y}) \]

\[\langle \text{using } \nabla_x f(\mathbf{y} - \mathbf{x}) = -\nabla_y f(\mathbf{y} - \mathbf{x}) \rangle \]

\[= - \iint_S (\mathbf{c} \cdot \nabla_y) \left(\frac{(\mathbf{y} - \mathbf{x})}{|\mathbf{y} - \mathbf{x}|^3} \right) \cdot d^2 \mathbf{a}(\mathbf{y}) \]

\[= - \iint_S \left(\nabla \times \left(\frac{(\mathbf{y} - \mathbf{x})}{|\mathbf{y} - \mathbf{x}|^3} \times \mathbf{c} \right) \right) \cdot d^2 \mathbf{a}(\mathbf{y}) \quad \langle \text{using eq. (3)} \rangle \]

\[= - \oint_L \frac{(\mathbf{y} - \mathbf{x})}{|\mathbf{y} - \mathbf{x}|^3} \times \mathbf{c} \cdot d^2 \mathbf{y} \quad \langle \text{by the Stokes' theorem} \rangle \]

\[= + \oint_L (\mathbf{c} \cdot (\frac{(\mathbf{y} - \mathbf{x})}{|\mathbf{y} - \mathbf{x}|^3} \times d\mathbf{y})) \quad \langle \text{vector identity} \rangle \]

\[= \mathbf{c} \cdot \oint_L \frac{(\mathbf{y} - \mathbf{x})}{|\mathbf{y} - \mathbf{x}|^3} \times d\mathbf{y}. \]

(S.31)

Since \(\mathbf{c} \) on both sides of this equation is an arbitrary constant vector, this means

\[\nabla \Omega(\mathbf{x}) = \oint_L \frac{(\mathbf{y} - \mathbf{x})}{|\mathbf{y} - \mathbf{x}|^3} \times d\mathbf{y} = - \oint_L d\mathbf{y} \times \frac{(\mathbf{y} - \mathbf{x})}{|\mathbf{y} - \mathbf{x}|^3}. \]

(S.32)

Finally, let’s see what all this math has to do with eq. (1) for the scalar magnetic potential \(\Psi(\mathbf{x}) \). The magnetic intensity field \(\mathbf{H} \) follows from \(\Psi(\mathbf{x}) \) as \(-\nabla \Psi\), hence according to eqs. (1) and (S.32),

\[\mathbf{H}(\mathbf{x}) = -\nabla \Psi(\mathbf{x}) = -\frac{I}{4\pi} \nabla \Omega(\mathbf{x}) = + \frac{1}{4\pi} \oint_L \mathbf{I} \times \frac{(\mathbf{y} - \mathbf{x})}{|\mathbf{y} - \mathbf{x}|^3}. \]

(S.33)

But this is precisely the Biot–Savart–Laplace formula for the magnetic field of the current \(I \) flowing through the wire loop \(\mathcal{L} \)!

Quod erat demonstrandum.
Problem 4(a):
Before addressing the problem at hand, let’s consider work and energy of a variable-capacitance capacitor connected to a battery. As the capacitance changes, the charge stored in the capacitor changes, so a current flows through the battery, which performs electric work

\[W_{el} = V \delta Q. \]

Also, changing the capacitance of a charged capacitor takes a mechanical work \(W_{\text{mech}} \), which can be calculated from the energy balance equation

\[\delta U = \delta W_{el} + \delta W_{\text{mech}} \] \hspace{1cm} (S.34)

where

\[U = \frac{Q^2}{2C} = \frac{CV^2}{2} = \frac{VQ}{2} \] \hspace{1cm} (S.35)

is the energy stored in the capacitor. Consequently

\[\delta U = \frac{Q\delta Q}{C} - \frac{Q^2}{2C^2} \delta C = V \delta Q - \frac{V^2}{2} \delta C, \] \hspace{1cm} (S.36)

and hence

\[\delta W_{\text{mech}} = \delta U - V \delta Q = -\frac{V^2}{2} \delta C. \] \hspace{1cm} (S.37)

BTW, the above calculation does not depend on the battery’s voltage \(V \) being fixed. So the mechanical work involved in an infinitesimal change of capacitance is always given by eq. (S.37), regardless of whether the capacitor is hooked up to a fixed-voltage battery, or to more complicated power supply, or even charged and disconnected.

Now consider moving a piece of dielectric in or out from between the plates of a charged capacitor. Such movement changes the capacitance \(C \), and according to eq. (S.37) this takes a mechanical work and hence mechanical forces. Specifically, there is a force pulling the dielectric inside the capacitor.
To see how this works, take a parallel plate capacitor, with rectangular plates of length L, width w, and distance d between the plates, $d \ll L, w$. The movable dielectric completely fills the gap between the plates and covers their whole width but not the length:

This capacitor can be thought as a parallel circuit of two capacitors, one vacuum-filled of length $L - z$ and the other dielectric-filled of length x, so altogether

$$C = \varepsilon \varepsilon_0 \frac{w x}{d} + \varepsilon_0 \frac{(L - x) w}{d}.$$ (S.38)

Pulling the dielectric in through length δx changes the capacitance by

$$\delta C = (\varepsilon - 1) \varepsilon_0 \frac{w}{d} \times \delta x,$$ (S.39)

and according to eq. (S.37) this takes mechanical work upon the capacitor

$$W_{\text{mech}} = - \frac{V^2}{2} \times \frac{(\varepsilon - 1) \varepsilon_0 w}{d} \times \delta x.$$ (S.40)

The mechanical work done by the capacitor obtains by sign reversal, and equating this work to $F \times \delta x$, we find the force F pulling the dielectric inside the capacitor,

$$F = + \frac{V^2}{2} \times \frac{(\varepsilon - 1) \varepsilon_0 w}{d}.$$ (S.41)

Finally, let’s turn the capacitor plates vertically and immerse them part-way into transformer oil. The oil is a dielectric, so the force (S.41) pulls it into the space between the plates, and that’s what raises the oil level between the plates compared to its level outside. The
height \(h \) through which the oil is raised follows from balancing the pulling force \(F \) against the weight of extra oil between the plates,

\[
F = g\rho wdh,
\]

and hence

\[
h = \frac{F}{g\rho w} = (\epsilon - 1)\epsilon_0 \frac{V^2}{2g\rho d^2}.
\]

Note that the plates’ width \(w \) cancels out from this formula.

For a numeric example, take transformer oil with dielectric constant \(\epsilon = 1.34 \) and mass density 882 kg/m\(^3\), make the gap between the plates 1.00 mm wide, and charge the capacitor to \(V = 3000 \) Volts, then the oil in the gap will rise to \(h = 4.6 \) mm.