Problem 1(a):
The quadrupole moment tensor of a system of point charges is

\[Q_{ij} = \sum_n q_n \left(\frac{3}{2} x_{n,i} x_{n,j} - \frac{1}{2} r_n^2 \right). \quad (S.1) \]

The 4 charges in question are all in the same plane — which we take to be the \((x, y)\) plane, — hence \(Q_{xz} = Q_{yz} = 0\). Also, all 4 charges lie at the same distance \(r = a/\sqrt{2}\) from the origin and the net charge \(\sum_n q_n\) vanishes, hence \(\sum_n q_n r_n^2 = 0\) and therefore

\[Q_{zz} = 0 \quad \text{and} \quad Q_{xx} + Q_{yy} = 0. \quad (S.2) \]

The remaining independent components of the quadrupole tensor form a complex combination

\[Q = Q_{xx} - Q_{yy} + 2iQ_{xy} = \frac{3}{2} \sum_n q_n (x_n + iy_n)^2. \quad (S.3) \]

For the charges at the corners of a rotating square

\[\forall n:\ \ q_n (x_n + iy_n)^2 = +q \frac{a^2}{2} \times e^{2i\omega t} \quad (S.5) \]
and hence
\[Q = 3qa^2 \times e^{2i\omega t}. \] (S.6)

In terms of the quadrupole tensor components, this means
\[Q_{xx} = -Q_{yy} = \frac{1}{2} \text{Re}(Q) = \frac{3}{2}qa^2 \times \cos(2\omega t), \quad Q_{xy} = \frac{1}{2} \text{Im}(Q) = \frac{3}{2}qa^2 \times \sin(2\omega t), \] (S.7)
or in matrix notations
\[Q_{ij} = \frac{3qa^2}{2} \begin{pmatrix} \cos(2\omega t) & \sin(2\omega t) & 0 \\ \sin(2\omega t) & -\cos(2\omega t) & 0 \\ 0 & 0 & 0 \end{pmatrix}. \] (S.8)

Note that this quadrupole tensor oscillates with frequency \(2\omega\), i.e., twice the rotation frequency of the charges.

Problem 1 (b–c):
As explained in class, the EM power radiated in a particular direction \(\mathbf{n}\) is
\[\frac{dP}{d\Omega} = \frac{Z_0\omega_{osc}^2}{2c^2} \times (|\mathbf{f}(\mathbf{n})|^2 - |\mathbf{n} \cdot \mathbf{f}(\mathbf{n})|^2) \] (S.9)

where
\[\mathbf{f}(\mathbf{n}) = \frac{1}{4\pi} \iiint d^3y \mathbf{J}(y) \exp(-i\mathbf{n} \cdot \mathbf{y}). \] (S.10)

In the long wavelength approximation, the leading contribution to the \(\mathbf{f}\) comes from the lowest oscillating multipole moment, electric or magnetic. For the system at hand, the lowest oscillating moment is the electric quadrupole; in light of eq. (S.8), it has frequency \(\omega_{osc} = 2\omega\) and amplitude
\[Q_{ij} = \frac{3qa^2}{2} \begin{pmatrix} 1 & i & 0 \\ i & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \] (S.11)
For a general electric quadrupole,

\[f_j(n) = \frac{\omega_{\text{osc}}^2}{12\pi c} Q_{jk} n_k, \quad \text{(S.12)} \]

so for the quadrupole in question

\[
\begin{pmatrix}
 f_x \\
 f_y \\
 f_z
\end{pmatrix} = \frac{\omega_{\text{osc}}^2 q a^2}{8\pi c} \begin{pmatrix}
 1 \\
 i \\
 0
\end{pmatrix} (n_x + in_y), \quad \text{(S.13)}
\]

or in spherical coordinates

\[
\begin{pmatrix}
 f_x \\
 f_y \\
 f_z
\end{pmatrix} = \frac{\omega_{\text{osc}}^2 q a^2}{8\pi c} \begin{pmatrix}
 1 \\
 i \\
 0
\end{pmatrix} \sin \theta e^{i\phi}. \quad \text{(S.14)}
\]

Consequently,

\[
f^* \cdot f = \frac{\omega_{\text{osc}}^4 q^2 a^4}{64\pi^2 c^2} \times 2 \sin^2 \theta, \quad \text{(S.15)}
\]

\[
n \cdot f = \frac{\omega_{\text{osc}}^4 q^2 a^4}{64\pi^2 c^2} \times (\sin \theta e^{i\phi})^2, \quad \text{(S.16)}
\]

hence

\[
(|f(n)|^2 - |n \cdot f(n)|^2) = \frac{\omega_{\text{osc}}^4 q^2 a^4}{64\pi^2 c^2} \times (2 \sin^2 \theta - \sin^4 \theta), \quad \text{(S.17)}
\]

and therefore

\[
\frac{dP}{d\Omega} = \frac{Z_0 q^2 a^4 \omega_{\text{osc}}^6}{128\pi^2 c^4} \times \sin^2 \theta (2 - \sin^2 \theta). \quad \text{(S.18)}
\]

In particular, the angular dependence of the radiated power has form

\[
\frac{dP}{d\Omega} \propto \sin^2 \theta (2 - \sin^2 \theta) = 1 - \cos^4 \theta. \quad \text{(S.19)}
\]
Graphically,

As to the total power radiated by the rotating quadrupole,

\[
P_{\text{net}} = \frac{Z_0 q^2 a^4 \omega_{\text{osc}}^6}{128 \pi^2 c^4} \times \int \int d^2 \Omega (1 - \cos^4 \theta)
\]

where \(\omega_{\text{osc}} = 2\omega \) and

\[
\int \int d^2 \Omega (1 - \cos^4 \theta) = 2 \pi \int_{-1}^{+1} d \cos \theta (1 - \cos^4 \theta) = 4 \pi \times \left(1 - \frac{1}{5} \right) = \frac{16 \pi}{5}.
\]

Thus altogether,

\[
P_{\text{net}} = \frac{8 Z_0 q^2 a^4 \omega^6}{5 \pi c^4} = \frac{8 q^2}{5 \pi \varepsilon_0} \times \frac{a^4 \omega^6}{c^5}.
\]
Problem 2(a):
The retarded Green’s function of the D’Alembertian operator is
\[G_R(\mathbf{x} - \mathbf{y}, t_x - t_y) = \frac{\delta(t_x - t_y - |\mathbf{x} - \mathbf{y}|/c)}{4\pi|\mathbf{x} - \mathbf{y}|}, \quad (S.23) \]
hence in the Landau gauge for the EM potentials \(\Phi \) and \(\mathbf{A} \),
\begin{align*}
\Phi(\mathbf{x}, t) &= \frac{1}{4\pi\epsilon_0} \iiint d^3y \frac{\rho(y, t - |\mathbf{x} - \mathbf{y}|/c)}{|\mathbf{x} - \mathbf{y}|}, \\
\mathbf{A}(\mathbf{x}, t) &= \frac{\mu_0}{4\pi} \iiint d^3y \frac{\mathbf{J}(y, t - |\mathbf{x} - \mathbf{y}|/c)}{|\mathbf{x} - \mathbf{y}|}. \quad (S.24)
\end{align*}
In particular, for the current \(\mathbf{J} \) as in eq. (1), the vector potential is
\[\mathbf{A}(\mathbf{x}, t) = \frac{\mu_0}{4\pi} \iiint d^3y \frac{\mathbf{d}(t - |\mathbf{x} - \mathbf{y}|/c)}{|\mathbf{x} - \mathbf{y}|} \delta^{(3)}(\mathbf{y}) = \frac{\mu_0}{4\pi} \frac{\mathbf{d}(t - |\mathbf{x}|/c)}{|\mathbf{x}|}, \quad (S.25) \]
in perfect agreement with eq. (2). Note: in my notations, \(\dot{\mathbf{d}} \) is the time derivative of the dipole moment \(\mathbf{d} \).

For the scalar potential, the calculation is more involved:
\begin{align*}
\Phi(\mathbf{x}, t) &= -\frac{1}{4\pi\epsilon_0} \iiint d^3y \frac{\mathbf{d}(t - |\mathbf{x} - \mathbf{y}|)}{|\mathbf{x} - \mathbf{y}|} \cdot \nabla \delta^{(3)}(\mathbf{y}) \\
&= +\frac{1}{4\pi\epsilon_0} \left[\nabla_y \cdot \frac{\mathbf{d}(t - |\mathbf{x} - \mathbf{y}|)}{|\mathbf{x} - \mathbf{y}|} \right] \bigg|_{\mathbf{y} = 0} \\
&= -\frac{1}{4\pi\epsilon_0} \left[\nabla_x \cdot \frac{\mathbf{d}(t - |\mathbf{x} - \mathbf{y}|)}{|\mathbf{x} - \mathbf{y}|} \right] \bigg|_{\mathbf{y} = 0} \\
&= -\frac{1}{4\pi\epsilon_0} \nabla_x \cdot \frac{\mathbf{d}(t - |\mathbf{x}|/c)}{|\mathbf{x}|}. \quad (S.26)
\end{align*}
On the last line here, the space derivative \(\nabla_x \) acts on both the denominator and on the numerator \(\mathbf{d}(t_{\text{ret}}) \) since the retarded time depends on \(\mathbf{x} \),
\[\nabla(t_{\text{ret}} = t - r/c) = -\frac{\mathbf{n}}{c}, \quad (S.27) \]
hence
\[\nabla \cdot \mathbf{d}(t_{\text{ret}}) = -\frac{n}{c} \cdot \dot{\mathbf{d}}(t_{\text{ret}}) \] (S.28)

and therefore
\[\Phi(\mathbf{x}, t) = + \frac{1}{4\pi\epsilon_0} \left[\frac{n}{rc} \cdot \dot{\mathbf{d}} + \frac{n}{r^2} \cdot \dot{\mathbf{d}} \right]_{\text{ret}}, \] (S.29)

exactly as in eq. (2).

Problem 2(b):
Let’s start with the magnetic field

\[\mathbf{B}(\mathbf{x}, t) = \nabla \times \mathbf{A}(\mathbf{x}, t) = \frac{\mu_0}{4\pi} \nabla \times \left(\frac{\dot{\mathbf{d}}(t_{\text{ret}})}{r} \right). \] (S.30)

Similar to eq. (S.28),
\[\nabla \times \dot{\mathbf{d}}(t_{\text{ret}}) = -\frac{n}{c} \times \ddot{\mathbf{d}}(t_{\text{ret}}), \] (S.31)

hence
\[\nabla \times \left(\frac{\dot{\mathbf{d}}(t_{\text{ret}})}{r} \right) = -\frac{n}{rc} \times \ddot{\mathbf{d}}(t_{\text{ret}}) - \frac{n}{r^2} \times \dot{\mathbf{d}}(t_{\text{ret}}) \] (S.32)

and therefore
\[\mathbf{B}(\mathbf{x}, t) = -\frac{\mu_0}{4\pi} \left[\frac{n}{rc} \times \dot{\mathbf{d}} + \frac{n}{r^2} \times \ddot{\mathbf{d}} \right]_{\text{ret}}. \] (S.33)

In a similar manner, taking the gradient of the scalar potential \(\Phi(\mathbf{x}, t) \), we find
\[\nabla_i \left(\frac{n}{rc} \cdot \dot{\mathbf{d}}(t_{\text{ret}}) \right) = \left(\nabla_i \left(\frac{n_j}{rc} \right) \right) \cdot \dot{\mathbf{d}}_j(t_{\text{ret}}) + \frac{n_j}{rc} \left(\nabla_i \dot{d}_j(t_{\text{ret}}) \right) \]
\[= \delta_{ij} - \frac{2n_i n_j}{r^2 c} \dot{d}_j(t_{\text{ret}}) - \frac{n_j}{rc} \frac{n_i}{c} \ddot{d}_j(t_{\text{ret}}), \] (S.34)
\[\nabla_i \left(\frac{n_i}{r^2} \cdot d(t_{\text{ret}}) \right) = \left(\nabla_i \left(\frac{n_j}{r^2} \right) \right) d_j(t_{\text{ret}}) + \frac{n_j}{r^2} \left(\nabla_i d_j(t_{\text{ret}}) \right) \]
\[= \frac{\delta_{ij} - 3n_in_j}{r^3} d_j(t_{\text{ret}}) - \frac{n_j}{r^2 c} \frac{n_i}{c} d_j(t_{\text{ret}}), \quad (S.35) \]

and therefore
\[\nabla_i \Phi(x, t) = \frac{1}{4\pi\epsilon_0} \left[\frac{\delta_{ij} - 3n_in_j}{r^3} d_j + \frac{\delta_{ij} - 3n_in_j}{r^2c} \frac{\dot{d}_j}{c} - \frac{n_i n_j}{rc^2} \frac{\ddot{d}_j}{c} \right]_{\text{ret}}. \quad (S.36) \]

At the same time,
\[\frac{\partial}{\partial t} A_i(x, t) = \frac{\mu_0}{4\pi r} \frac{\ddot{d}_i(t_{\text{ret}})}{r}, \quad (S.37) \]

thus
\[E_i(x, t) = -\nabla_i \Phi(x, t) - \frac{\partial A_i}{\partial t} \]
\[= -\frac{1}{4\pi\epsilon_0} \left[\frac{\delta_{ij} - 3n_in_j}{r^3} d_j + \frac{\delta_{ij} - 3n_in_j}{r^2c} \frac{\dot{d}_j}{c} + \frac{\delta_{ij} - n_in_j}{rc^2} \frac{\ddot{d}_j}{c} \right]_{\text{ret}}. \quad (S.38) \]

Or in vector notations,
\[E(x, t) = -\frac{1}{4\pi\epsilon_0} \left[\frac{d - 3n(n \cdot d)}{r^3} + \frac{\dot{d} - 3n(n \cdot \dot{d})}{r^2c} + \frac{\ddot{d} - n(n \cdot \ddot{d})}{rc^2} \right]_{\text{ret}}. \quad (S.39) \]

Problem 2(c):
For a harmonically oscillating dipole moment \(d(t) = d \exp(-i\omega t) \), we have
\[d(t_{\text{ret}}) = d \exp(ikr - i\omega t), \]
\[\frac{1}{c} \dot{d}(t_{\text{ret}}) = -ikd \exp(ikr - i\omega t), \]
\[\frac{1}{c^2} \ddot{d}(t_{\text{ret}}) = -k^2d \exp(ikr - i\omega t). \quad (S.40) \]

Consequently, eq. (S.33) for the magnetic field becomes
\[B(x, t) = -\frac{\mu_0 c}{4\pi} e^{ikr - i\omega t} \left[\frac{-k^2 n \times d}{r} + \frac{-ikn \times d}{r^2} \right] \]
\[= + \frac{k^2}{4\pi\epsilon_0 c} e^{ikr - i\omega t} \left(1 + \frac{i}{kr} \right) (n \times d), \quad (S.41) \]
exactly as in eq. (3.a). Likewise, eq. (S.39) for the electric field becomes

$$ E(x, t) = -\frac{1}{4\pi\epsilon_0} e^{ikr-i\omega t} \left[\frac{d - 3n(n \cdot d)}{r^3} - ik \frac{d - 3n(n \cdot d)}{r^2} - k^2 \frac{d - n(n \cdot d)}{r} \right] $$

$$ = + \frac{k^2}{4\pi\epsilon_0} \frac{e^{ikr-i\omega t}}{r} \left[\frac{i}{kr} \left(1 + \frac{i}{kr} \right) (d - 3n(n \cdot d)) - n \times (n \times d) \right], \quad (S.42) $$

in perfect agreement with eq. (3.b).

Problem 2(d):

Eqs. (3) for the magnetic and the electric fields apply for all distances r from the dipole — short, medium, and long — as long as the dipole itself may be approximated as point-like, So let’s take a closer look at their long-distance and short-distance limits, where the distances are viewed as long or short by comparison with the wavelength $\lambda = 2\pi/k$.

In the long distance regime $r \gg \lambda$, we may neglect all the negative powers of kr in eqs. (3), which leaves us with

$$ eB(x, t) \approx -\frac{k^2}{4\pi\epsilon_0} \frac{e^{ikr-i\omega t}}{r} (n \times d), \quad (S.43) $$

$$ E(x, t) \approx -\frac{k^2}{4\pi\epsilon_0} \frac{e^{ikr-i\omega t}}{r} (n \times (n \times d)). \quad (S.44) $$

These are precisely the radiation fields of a harmonic dipole we have discussed in class. Note that they diminish with distance as $1/r$, so that the radiation power density spreads out as $1/r^2$.

On the other hand, in the short distance regime $r \ll \lambda$, we focus on the highest negative powers of kr in eqs. (3), and we may also approximate $\exp(ikr) \approx 1$. Consequently, the short-distance limit of the electric field is

$$ E(x, t) \approx -\frac{k^2}{4\pi\epsilon_0} \frac{e^{-i\omega t}}{r} \frac{-1}{k^2 r^2} (d - n(n \cdot d)) $$

$$ = + \frac{1}{4\pi\epsilon_0} \frac{d - 3n(n \cdot d)}{r^3} e^{-i\omega t}. \quad (S.45) $$

This is a quasistatic Coulomb field of the electric dipole $d(t) = de^{-i\omega t}$. That is, at any given instance of time t, the field (S.44) is the Coulomb field of the dipole moment we happen to have at time t. As any good dipole field, it scales with distance as $1/r^3$.

8
As to the magnetic field in the short-distance regime, the leading term in eq. (3.a) is

\[B(x, t) = -\frac{i\mu_0\omega}{4\pi} \frac{n \times d}{r^2} e^{-i\omega t}. \]

(S.46)

Unlike the electric field (S.45), the short-distance magnetic field scales with distance as \(1/r^2\), slower than any quasistatic magnetic multipole, but faster than the \(1/r\) radiation-zone fields. Also, the magnetic field (S.44) is not a quasistatic field, since it vanishes for \(\omega \to 0\). Instead, this magnetic field is induced by the displacement current due to the time-dependent dipole field (S.39) in the short-distance zone. Indeed,

\[\nabla \times H (\text{from eq. (S.46)}) = -\frac{i\omega}{4\pi} \nabla \times \left(\frac{n \times d}{r^2} \right) e^{-i\omega t} \]

\[= -\frac{i\omega}{4\pi} \frac{d - 3n(n \cdot d)}{r^3} e^{-i\omega t} \]

(S.47)

\[= \frac{\partial}{\partial t} \left(D = \epsilon_0 E (\text{from eq. (S.45)}) \right). \]

Problem 3(a):

In part (b) of problem (2) we saw that for general \(d(t)\) the electric and the magnetic fields emitted by the dipole are

\[B(x, t) = -\frac{\mu_0}{4\pi} \left[\frac{n}{rc} \times \ddot{d} + \frac{n}{r^2} \times \dot{d} \right]_{\text{ret}}, \]

(S.33)

\[E(x, t) = -\frac{1}{4\pi\epsilon_0} \left[\frac{d - 3n(n \cdot d)}{r^3} + \frac{\ddot{d} - 3n(n \cdot \dot{d})}{r^2c} + \frac{\ddot{d} - n(n \cdot \ddot{d})}{rc^2} \right]_{\text{ret}}. \]

(S.39)

In the long distance limit, both fields may be approximated by the terms which behave as \(1/r\) rather than \(1/r^2\) or \(1/r^3\), thus

\[B(x, t) \approx -\frac{\mu_0}{4\pi c} \frac{n}{r} \times \ddot{d}(t_{\text{ret}}), \]

(S.48)

\[E(x, t) \approx -\frac{1}{4\pi\epsilon_0 c^2} \frac{[\ddot{d} - n(n \cdot \dot{d})](t_{\text{ret}})}{r} \approx -cn \times B(x, t). \]

(S.49)
Consequently, the Poynting vector is

$$\mathbf{S} = \frac{1}{\mu_0} \mathbf{E} \times \mathbf{B} = -\frac{c}{\mu_0} (\mathbf{n} \times \mathbf{B}) \times \mathbf{B} = +\frac{c}{\mu_0} \left(\mathbf{n} (\mathbf{B}^2) - \mathbf{B} (\mathbf{n} \cdot \mathbf{B}) \right) = +\frac{c \mathbf{B}^2}{\mu_0} \mathbf{n} \tag{S.50}$$

where the last equality here follows from $\mathbf{B} \propto \mathbf{n} \times \ddot{\mathbf{d}} \implies \mathbf{n} \cdot \mathbf{B} = 0$. Specifically, for the magnetic field as in eq. (S.48), the Poynting vector is

$$\mathbf{S} = \frac{\mu_0}{16\pi^2c} [\mathbf{n} \times \dddot{\mathbf{d}}(t_{\text{ret}})]^2 \frac{\mathbf{n}}{r^2}. \tag{S.51}$$

Note that this energy flux is directed radially outward and diminishes with distance as $1/r^2$. Consequently, the power radiated per unit of solid angle in the direction \mathbf{n} is

$$\frac{dP}{d\Omega} = \frac{\mu_0}{16\pi^2c} [\mathbf{n} \times \dddot{\mathbf{d}}(t_{\text{ret}})]^2, \tag{S.52}$$

and the net power radiated by the dipole is

$$\int \frac{dP}{d\Omega} d\Omega = \frac{\mu_0}{6\pi c} \dddot{d}(t_{\text{ret}}) = \frac{Z_0}{6\pi c^2} \dddot{d}(t_{\text{ret}}). \tag{4}$$

BTW, the retarded time $t_{\text{ret}} = t - r/c$ is retarded relative to the time t at which we detect this radiation at long distance r from the dipole. By the clock of the dipole itself, the energy loss happens at the same time as the \dddot{d}, thus

$$\frac{dU_{\text{dipole}}(t')}{dt'} = -\frac{Z_0}{6\pi c^2} \dddot{d}(t'). \tag{S.53}$$
Problem 3(b):
The parallel-plate capacitor in question has capacitance
\[C = \frac{\epsilon_0 A}{b}. \] (S.54)

When it’s charged to initial charge \(Q_0 \) and then allowed to discharge via resistor \(R \), it’s charge decreases exponentially as
\[Q(t) = Q_0 \times \exp(-t/\tau) \quad \text{for} \quad \tau = RC. \] (S.55)

The dipole moment of this capacitor is
\[d(t) = bQ(t) = bQ_0 \exp(-t/\tau), \] (S.56)
hence
\[\ddot{d} = \frac{bQ_0}{\tau^2} \exp(-t/\tau), \] (S.57)
which causes EM radiation at net power
\[P = \frac{Z_0}{6\pi c^2} \frac{b^2 Q_0^2}{\tau^4} \times \exp(-2t/\tau). \] (S.58)

Integrating this power over the discharge time, we find the net energy carried by the EM radiation to be
\[\Delta U_{\text{EM}} = \int_0^\infty dt P(t) = \frac{Z_0}{6\pi c^2} \frac{b^2 Q_0^2}{\tau^4} \times \int_0^\infty dt e^{-2t/\tau} = \frac{Z_0}{6\pi c^2} \frac{b^2 Q_0^2}{\tau^4} \times \frac{\tau}{2}. \] (S.59)

Compared to the initial energy stored in the capacitor
\[U_0 = \frac{Q_0^2}{2C} = \frac{Q_0^2 b}{2\epsilon_0 A}, \] (S.60)
the fraction of this energy carried by the EM radiation is
\[\frac{\Delta U_{\text{EM}}}{U_0} = \frac{Z_0 \epsilon_0}{6\pi c^2} \times \frac{AB}{\tau^3} = \frac{1}{6\pi} \times \frac{AB}{(c\tau)^3} \] (S.61)
where the second equality follows from \(Z_0 \epsilon_0 c = 1 \).
Problem 3(b):
For the specific example of $A = 100 \text{ cm}^2 = 0.01 \text{ m}^2$, $d = 1 \text{ mm} = 10^{-3} \text{ m}$ and $R = 10 \Omega$, we have

$$C = \frac{\varepsilon_0 A}{b} = 88.5 \text{ pF}, \quad \tau = RC = 0.885 \text{ ns}, \quad c\tau = 0.265 \text{ m}, \quad (S.62)$$

and hence

$$\frac{\Delta U_{\text{EM}}}{U_0} = \frac{1}{6\pi} \times \frac{AB}{(c\tau)^3} = \frac{10^{-5} \text{ m}^3}{6\pi (0.265 \text{ m})^3} = 2.85 \times 10^{-5}. \quad (S.63)$$