Consider an $\mathcal{N} = 1$ supersymmetric gauge theory with a simple non-abelian gauge group G and $3 \dim(G)$ chiral superfields Φ^k_a comprising 3 copies of the adjoint representation of G ($k = 1, 2, 3, a = 1, \ldots, \dim(G)$). In matrix notations, we have a matrix-valued vector superfield $V(x, \theta, \bar{\theta})$ and three matrix-valued chiral superfields $\Phi^k(y, \theta)$ together with their anti-chiral conjugates $\bar{\Phi}^k(y, \bar{\theta})$. The action

$$
S = \int d^4x d^2\theta d^2\bar{\theta} \frac{2}{2} \text{tr} \left(\Phi^k e^{2V} \Phi^k e^{-2V} \right) + \int d^4x d^2\theta \text{tr} \left(\frac{1}{2g^2} \epsilon_{\alpha\beta} W^\alpha W^\beta + \frac{Y}{3} \epsilon_{ijkl} \Phi^i \Phi^j \Phi^k \Phi^l \right) + \int d^4x d^2\bar{\theta} \text{tr} \left(\frac{1}{2g^2} \epsilon_{\dot{\alpha}\dot{\beta}} \dot{W}^\dot{\alpha} \dot{W}^\dot{\beta} + \frac{Y}{3} \epsilon_{ij\ell k} \bar{\Phi}^i \bar{\Phi}^j \bar{\Phi}^k \bar{\Phi}^\ell \right)
$$

has a manifest $SU(3)$ flavor symmetry (acting on the k index of the Φ^k superfields). In fact it’s the only renormalizable action with this symmetry.

1. Expand the action (1) in terms of the component fields. Use the Wess–Zumino gauge for the vector superfield V.

2. Eliminate the auxiliary fields by their equations of motion and derive the scalar potential $V(\varphi^k, \varphi_k^\dagger)$.

3. Show that for a particular value Y_0 of the superpotential coupling Y, the scalar potential has an $SO(6)$ symmetry. Specifically, in terms of the hermitian scalar fields

$$
H_k = \frac{\varphi^k + \varphi_k^\dagger}{\sqrt{2}}, \quad H_{k+3} = \frac{\varphi^k - \varphi_k^\dagger}{\sqrt{2i}}
$$

the potential becomes

$$
V(s) \propto \sum_{I,J=1,\ldots,6} \text{tr} \left(-[H_I, H_J]^2 \right).
$$

4. Show that for $Y = Y_0$, the whole action of the component-field theory is $\text{Spin}(6) = SU(4)$ invariant. To make this symmetry manifest, you should rescale the fermionic fields so
that all of them are normalized canonically. Assuming $2 \text{tr}(t^a t^b) = \delta^{ab}$ for the generators t_a of the gauge group, the kinetic-energy terms for the fermions should read

$$\mathcal{L} \supset i \bar{\psi}_p^a \sigma^m \nabla_m \psi^{a,p} = 2i \text{tr}(\bar{\psi}_p \sigma^m \nabla_m \psi^p) \quad (4)$$

where $p = 1, 2, 3, 4$ and $\psi^4_\alpha = \lambda_\alpha$ and $\bar{\psi}^4_\dot{\alpha} = \bar{\lambda}_{\dot{\alpha}}$.

5. Show that this particular $SU(4)$ symmetry combined with the $\mathcal{N} = 1$ SUSY implies that the theory must have extended $\mathcal{N} = 4$ SUSY and that the $SU(4)$ is its R-symmetry.

6. Evaluate the action of the supercharges $Q_{p,\alpha}$ and $\overline{Q}_\dot{\alpha}^p$ on the component fields of the theory. That is, evaluate $[Q_{p,\alpha}, A^m]$, $[Q_{p,\alpha}, H_I]$, $\{Q_{p,\alpha}, \lambda_q^\beta\}$, $\{Q_{p,\alpha}, \bar{\lambda}_{q,\dot{\beta}}\}$ and ditto for the $\overline{Q}_\dot{\alpha}^p$.

Hint: Identify $Q_{4,\alpha}$ and $\overline{Q}_\dot{4}^\alpha$ as the manifest supercharges of the $\mathcal{N} = 1$ superfield formulation, eliminate the auxiliary fields to obtain on-shell formulæ, then use the $SU(4)$ symmetry.

* For extra credit: Verify that the $\mathcal{N} = 4$ superalgebra closes on-shell — i.e., modulo terms that vanish by field equations of motion — and also modulo gauge transforms of the vector fields A^m.

7. Verify that the component-field action is indeed $\mathcal{N} = 4$ supersymmetric.

8. Finally, show that the $\mathcal{N} = 4$ SSYM theory in $d = 4$ dimensions is precisely the dimensional reduction of the $\mathcal{N} = 1$ SSYM theory in $d = 10$ dimensions.

* For extra credit: Write down the supersymmetry action in the $d = 10$ SSYM theory and verify that the SUSY algebra closes on-shell.
Several problem in this exam involve $SU(4) = \text{Spin}(6)$ group theory which may be unfamiliar to some of the students. In this appendix, I explain how to relate the 4, the $\bar{4}$ and the 6 representations are related to each other.

From the Spin(6) point of view, 6 is the vector representation, 4 is the spinor and the $\bar{4}$ is the other spinor; the two spinors are complex conjugates of each other. From the $SU(4)$ point of view, 4 is the fundamental representation, $\bar{4}$ is its conjugate, and 6 is the antisymmetric tensor representation — or the conjugate antisymmetric tensor representation; Translating between the pictures, we may write the 6 scalar fields of the $N = \triangle$ SSYM theory as $H_I = H_I^\dagger$ or as $H_{[pq]} \equiv C_{I,pq} H_I$ or as $H_I^{[pq]} = C_I^{pq} H_I$. (Please note that each of the $H_{[pq]}$ or H_I is itself a matrix with respect to the gauge group G.) The coefficients $C_{I,pq}$ of this translation satisfy several useful equations:

\begin{align*}
C_{I,pq} & = -C_{I,qp} = \epsilon_{pqr}s C_{I}^{rs}, \\
C_{I,pq} C_{J}^{pq} & = 4 \delta_{IJ}, \\
C_{I,pq} C_{I}^{rs} & = 2 (\delta^{r}_{p}\delta^{s}_{q} - \delta^{s}_{p}\delta^{r}_{q}), \\
C_{I,pq} C_{J}^{sr} + C_{J,pq} C_{I}^{sr} & = -2 \delta_{IJ} \delta^{r}_{p}.
\end{align*}

(5)

In $SU(3) \subset SU(4)$ terms, i.e. distinguishing between $p = k = 1, 2, 3$ and $p = 4$, one has

\begin{align*}
C_{I,k\ell} & = \epsilon_{k\ell I} + i \epsilon_{k\ell(I-3)} , \quad C_{I,k4} = -C_{I,4k} = \delta_{kI} - i\delta_{k(I-3)}, \quad C_{I,44} = 0,
\end{align*}

(6)

and consequently

\begin{align*}
H_{k\ell} & = \sqrt{2} \epsilon_{k\ell j} \varphi^{j}, \quad H_{k4} = -H_{4k} = \sqrt{2} \varphi_{k}^{*}, \quad H_{44} = 0.
\end{align*}
You may also find useful a representation of the $d = 9+1$ Dirac Γ_M matrices in $SO(3 + 1) \times SO(6)$ terms. First, we define 16×16 Weyl matrices
\[
\Sigma_m = \begin{pmatrix}
\sigma_m \otimes 1_{4 \times 4} & 0 \\
0 & \bar{\sigma}_m \otimes 1_{4 \times 4}
\end{pmatrix}, \quad \Sigma_m = \begin{pmatrix}
\sigma_m \otimes 1_{4 \times 4} & 0 \\
0 & \bar{\sigma}_m \otimes 1_{4 \times 4}
\end{pmatrix}
\]
for $m = 0, 1, 2, 3$, and
\[
\Sigma_{(I+3)} = -\Sigma_{(I+3)} = \begin{pmatrix}
0 & 1_{2 \times 2} \otimes C_I \\
1_{2 \times 2} \otimes C_I^\dagger & 0
\end{pmatrix}
\]
for $I + 3 = 4, \ldots, 9$. Note that similar to their $d = 4$ counterparts, all these matrices are hermitian, $\Sigma_0 = \Sigma_0 = 1$ while $\Sigma_M = -\Sigma_M$ for $M \neq 0$, and
\[
\Sigma_M \Sigma_N + \Sigma_N \Sigma_M = 2g_{MN} = \Sigma_M \Sigma_N + \Sigma_N \Sigma_M.
\]
Another useful matrix is
\[
\Xi = \Sigma_2 \Sigma_7 \Sigma_8 \Sigma_9 = \Sigma_2 \Sigma_7 \Sigma_8 \Sigma_9 = \begin{pmatrix}
0 & \epsilon \otimes 1_{4 \times 4} \\
-\epsilon \otimes 1_{4 \times 4} & 0
\end{pmatrix}
\]
which satisfies $\Sigma_C \Sigma_M = \Sigma_M^* \Sigma_C$.

Consequently, we define the 32×32 Dirac matrices according to
\[
\Gamma_M = \begin{pmatrix}
0 & \Sigma_M \\
\Sigma_M & 0
\end{pmatrix}
\]
and have them satisfy the usual anticommutation relations $\Gamma_M \Gamma_N + \Gamma_N \Gamma_M = 2g_{MN}$. In the basis (7), Majorana–Weyl fermions satisfy
\[
\Psi = +\Gamma_{11} \Psi = +\Gamma_C \Psi^*
\]
where
\[
\Gamma_{11} = \begin{pmatrix}
+1 & 0 \\
0 & -1
\end{pmatrix} \quad \text{and} \quad \Gamma_C = \Gamma_2 \Gamma_7 \Gamma_8 \Gamma_9 = \begin{pmatrix}
\Xi & 0 \\
0 & \Xi
\end{pmatrix}.
\]